Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Aug;353:463–504. doi: 10.1113/jphysiol.1984.sp015347

Form, function and intracortical projections of spiny neurones in the striate visual cortex of the cat.

K A Martin, D Whitteridge
PMCID: PMC1193318  PMID: 6481629

Abstract

We have studied the neuronal circuitry and structure-function relationships of single neurones in the striate visual cortex of the cat using a combination of electrophysiological and anatomical techniques. Glass micropipettes filled with horseradish peroxidase were used to record extracellularly from single neurones. After studying the receptive field properties, the afferent inputs of the neurones were studied by determining their latency of response to electrical stimulation at different positions along the optic pathway. Some cells were thus classified as receiving a mono- or polysynaptic input from afferents of the lateral geniculate nucleus (l.g.n.), via X- or Y-like retinal ganglion cells. Two striking correlations were found between dendritic morphology and receptive field type. All spiny stellate cells, and all star pyramidal cells in layer 4A, had receptive fields with spatially separate on and off subfields (S-type receptive fields). All the identified afferent input to these, the major cell types in layer 4, was monosynaptic from X- or Y-like afferents. Neurones receiving monosynaptic X- or Y-like input were not strictly segregated in layer 4 and the lower portion of layer 3. Nevertheless the X- and Y-like l.g.n. fibres did not converge on any of the single neurones so far studied. Monosynaptic input from the l.g.n. afferents was not restricted to cells lying within layers 4 and 6, the main termination zones of the l.g.n. afferents, but was also received by cells lying in layers 3 and 5. The projection pattern of cells receiving monosynaptic input differed widely, depending on the laminar location of the cell soma. This suggests the presence of a number of divergent paths within the striate cortex. Cells receiving indirect input from the l.g.n. afferents were located mainly within layers 2, 3 and 5. Most pyramidal cells in layer 3 had axons projecting out of the striate cortex, while many axons of the layer 5 pyramids did not. The layer 5 cells showed the most morphological variation of any layer, were the most difficult to activate by electrical stimulation, and contained some cells which responded with the longest latencies of any cells in the striate cortex. This suggests that they were several synapses distant from the l.g.n. input. The majority of cells in layers 2, 3, 4 and 6 had the same basic S-type receptive field structure. Only layer 5 contained a majority of cells with spatially overlapping on and off subfields (C- and B-type receptive fields).(ABSTRACT TRUNCATED AT 400 WORDS)

Full text

PDF
463

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams J. C. Heavy metal intensification of DAB-based HRP reaction product. J Histochem Cytochem. 1981 Jun;29(6):775–775. doi: 10.1177/29.6.7252134. [DOI] [PubMed] [Google Scholar]
  2. Adams J. C. Technical considerations on the use of horseradish peroxidase as a neuronal marker. Neuroscience. 1977;2(1):141–145. doi: 10.1016/0306-4522(77)90074-4. [DOI] [PubMed] [Google Scholar]
  3. Ahlsen G., Grant K., Lindström S. Monosynaptic excitation of principal cells in the lateral geniculate nucleus by corticofugal fibers. Brain Res. 1982 Feb 25;234(2):454–458. doi: 10.1016/0006-8993(82)90886-1. [DOI] [PubMed] [Google Scholar]
  4. Alger B. E., McCarren M., Fisher R. S. On the possibility of simultaneously recording from two cells with a single microelectrode in the hippocampal slice. Brain Res. 1983 Jun 27;270(1):137–141. doi: 10.1016/0006-8993(83)90801-6. [DOI] [PubMed] [Google Scholar]
  5. BISHOP P. O., BURKE W., DAVIS R. Single-unit recording from antidromically activated optic radiation neurones. J Physiol. 1962 Aug;162:432–450. doi: 10.1113/jphysiol.1962.sp006943. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Bilge M., Bingle A., Seneviratne K. N., Whitteridge D. A map of the visual cortex in the cat. J Physiol. 1967 Jul;191(2):116P–118P. [PubMed] [Google Scholar]
  7. Bishop G. A., McCrea R. A., King J. S. An analysis of the morphology and cytology of HRP labeled Purkinje cells. Brain Res Bull. 1980 Sep-Oct;5(5):563–574. doi: 10.1016/0361-9230(80)90263-4. [DOI] [PubMed] [Google Scholar]
  8. Bowling D. B., Michael C. R. Projection patterns of single physiologically characterized optic tract fibres in cat. Nature. 1980 Aug 28;286(5776):899–902. doi: 10.1038/286899a0. [DOI] [PubMed] [Google Scholar]
  9. Bullier J., Henry G. H. Laminar distribution of first-order neurons and afferent terminals in cat striate cortex. J Neurophysiol. 1979 Sep;42(5):1271–1281. doi: 10.1152/jn.1979.42.5.1271. [DOI] [PubMed] [Google Scholar]
  10. Bullier J., Henry G. H. Neural path taken by afferent streams in striate cortex of the cat. J Neurophysiol. 1979 Sep;42(5):1264–1270. doi: 10.1152/jn.1979.42.5.1264. [DOI] [PubMed] [Google Scholar]
  11. Bullier J., Henry G. H. Ordinal position and afferent input of neurons in monkey striate cortex. J Comp Neurol. 1980 Oct 15;193(4):913–935. doi: 10.1002/cne.901930407. [DOI] [PubMed] [Google Scholar]
  12. Bullier J., Henry G. H. Ordinal position of neurons in cat striate cortex. J Neurophysiol. 1979 Sep;42(5):1251–1263. doi: 10.1152/jn.1979.42.5.1251. [DOI] [PubMed] [Google Scholar]
  13. Clarke P. G., Donaldson I. M., Whitteridge D. Binocular visual mechanisms in cortical areas I and II of the sheep. J Physiol. 1976 Apr;256(3):509–526. doi: 10.1113/jphysiol.1976.sp011336. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Cleland B. G., Levick W. R. Brisk and sluggish concentrically organized ganglion cells in the cat's retina. J Physiol. 1974 Jul;240(2):421–456. doi: 10.1113/jphysiol.1974.sp010617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Cleland B. G., Morstyn R., Wagner H. G., Levick W. R. Long-latency retinal input to lateral geniculate neurones of the cat. Brain Res. 1975 Jun 27;91(2):306–310. doi: 10.1016/0006-8993(75)90553-3. [DOI] [PubMed] [Google Scholar]
  16. Creutzfeldt O. D., Garey L. J., Kuroda R., Wolff J. R. The distribution of degenerating axons after small lesions in the intact and isolated visual cortex of the cat. Exp Brain Res. 1977 Mar 30;27(3-4):419–440. doi: 10.1007/BF00235514. [DOI] [PubMed] [Google Scholar]
  17. Dreher B., Leventhal A. G., Hale P. T. Geniculate input to cat visual cortex: a comparison of area 19 with areas 17 and 18. J Neurophysiol. 1980 Oct;44(4):804–826. doi: 10.1152/jn.1980.44.4.804. [DOI] [PubMed] [Google Scholar]
  18. Duysens J., Orban G. A., van der Glas H. W., Maes H. Receptive field structure of area 19 as compared to area 17 of the cat. Brain Res. 1982 Jan 14;231(2):293–308. doi: 10.1016/0006-8993(82)90367-5. [DOI] [PubMed] [Google Scholar]
  19. Ferster D., LeVay S. The axonal arborizations of lateral geniculate neurons in the striate cortex of the cat. J Comp Neurol. 1978 Dec 15;182(4 Pt 2):923–944. doi: 10.1002/cne.901820510. [DOI] [PubMed] [Google Scholar]
  20. Fisken R. A., Garey L. J., Powell T. P. The intrinsic, association and commissural connections of area 17 on the visual cortex. Philos Trans R Soc Lond B Biol Sci. 1975 Nov 20;272(919):487–536. doi: 10.1098/rstb.1975.0099. [DOI] [PubMed] [Google Scholar]
  21. Freund T. F., Martin K. A., Smith A. D., Somogyi P. Glutamate decarboxylase-immunoreactive terminals of Golgi-impregnated axoaxonic cells and of presumed basket cells in synaptic contact with pyramidal neurons of the cat's visual cortex. J Comp Neurol. 1983 Dec 10;221(3):263–278. doi: 10.1002/cne.902210303. [DOI] [PubMed] [Google Scholar]
  22. Freund T. F., Somogyi P. The section-Golgi impregnation procedure. 1. Description of the method and its combination with histochemistry after intracellular iontophoresis or retrograde transport of horseradish peroxidase. Neuroscience. 1983 Jul;9(3):463–474. doi: 10.1016/0306-4522(83)90166-5. [DOI] [PubMed] [Google Scholar]
  23. Friedlander M. J., Lin C. S., Sherman S. M. Structure of physiologically identified X and Y cells in the cat's lateral geniculate nucleus. Science. 1979 Jun 8;204(4397):1114–1117. doi: 10.1126/science.451559. [DOI] [PubMed] [Google Scholar]
  24. Friedlander M. J., Lin C. S., Stanford L. R., Sherman S. M. Morphology of functionally identified neurons in lateral geniculate nucleus of the cat. J Neurophysiol. 1981 Jul;46(1):80–129. doi: 10.1152/jn.1981.46.1.80. [DOI] [PubMed] [Google Scholar]
  25. Fuller J. H., Schlag J. D. Determination of antidromic excitation by the collision test: problems of interpretation. Brain Res. 1976 Aug 13;112(2):283–298. doi: 10.1016/0006-8993(76)90284-5. [DOI] [PubMed] [Google Scholar]
  26. Garey L. J., Powell T. P. An experimental study of the termination of the lateral geniculo-cortical pathway in the cat and monkey. Proc R Soc Lond B Biol Sci. 1971 Oct 12;179(1054):41–63. doi: 10.1098/rspb.1971.0080. [DOI] [PubMed] [Google Scholar]
  27. Gilbert C. D., Kelly J. P. The projections of cells in different layers of the cat's visual cortex. J Comp Neurol. 1975 Sep;163(1):81–105. doi: 10.1002/cne.901630106. [DOI] [PubMed] [Google Scholar]
  28. Gilbert C. D. Laminar differences in receptive field properties of cells in cat primary visual cortex. J Physiol. 1977 Jun;268(2):391–421. doi: 10.1113/jphysiol.1977.sp011863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Gilbert C. D. Microcircuitry of the visual cortex. Annu Rev Neurosci. 1983;6:217–247. doi: 10.1146/annurev.ne.06.030183.001245. [DOI] [PubMed] [Google Scholar]
  30. Gilbert C. D., Wiesel T. N. Clustered intrinsic connections in cat visual cortex. J Neurosci. 1983 May;3(5):1116–1133. doi: 10.1523/JNEUROSCI.03-05-01116.1983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Gilbert C. D., Wiesel T. N. Morphology and intracortical projections of functionally characterised neurones in the cat visual cortex. Nature. 1979 Jul 12;280(5718):120–125. doi: 10.1038/280120a0. [DOI] [PubMed] [Google Scholar]
  32. HUBEL D. H., WIESEL T. N. RECEPTIVE FIELDS AND FUNCTIONAL ARCHITECTURE IN TWO NONSTRIATE VISUAL AREAS (18 AND 19) OF THE CAT. J Neurophysiol. 1965 Mar;28:229–289. doi: 10.1152/jn.1965.28.2.229. [DOI] [PubMed] [Google Scholar]
  33. HUBEL D. H., WIESEL T. N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J Physiol. 1962 Jan;160:106–154. doi: 10.1113/jphysiol.1962.sp006837. [DOI] [PMC free article] [PubMed] [Google Scholar]
  34. HUBEL D. H., WIESEL T. N. Shape and arrangement of columns in cat's striate cortex. J Physiol. 1963 Mar;165:559–568. doi: 10.1113/jphysiol.1963.sp007079. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Hammond P., MacKay D. M. Differential responsiveness of simple and complex cells in cat striate cortex to visual texture. Exp Brain Res. 1977 Nov 24;30(2-3):275–296. doi: 10.1007/BF00237256. [DOI] [PubMed] [Google Scholar]
  36. Hanker J. S., Yates P. E., Metz C. B., Rustioni A. A new specific, sensitive and non-carcinogenic reagent for the demonstration of horseradish peroxidase. Histochem J. 1977 Nov;9(6):789–792. doi: 10.1007/BF01003075. [DOI] [PubMed] [Google Scholar]
  37. Harvey A. R. A physiological analysis of subcortical and commissural projections of areas 17 and 18 of the cat. J Physiol. 1980 May;302:507–534. doi: 10.1113/jphysiol.1980.sp013258. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Harvey A. R. The afferent connexions and laminar distribution of cells in area 18 of the cat. J Physiol. 1980 May;302:483–505. doi: 10.1113/jphysiol.1980.sp013257. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. Henry G. H., Harvey A. R., Lund J. S. The afferent connections and laminar distribution of cells in the cat striate cortex. J Comp Neurol. 1979 Oct 15;187(4):725–744. doi: 10.1002/cne.901870406. [DOI] [PubMed] [Google Scholar]
  40. Henry G. H., Lund J. S., Harvey A. R. Cells of the striate cortex projecting to the Clare-Bishop area of the cat. Brain Res. 1978 Jul 28;151(1):154–158. doi: 10.1016/0006-8993(78)90958-7. [DOI] [PubMed] [Google Scholar]
  41. Henry G. H. Receptive field classes of cells in the striate cortex of the cat. Brain Res. 1977 Sep 9;133(1):1–28. doi: 10.1016/0006-8993(77)90045-2. [DOI] [PubMed] [Google Scholar]
  42. Hochstein S., Shapley R. M. Quantitative analysis of retinal ganglion cell classifications. J Physiol. 1976 Nov;262(2):237–264. doi: 10.1113/jphysiol.1976.sp011594. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Hoffman K. P., Stone J. Conduction velocity of afferents to cat visual cortex: a correlation with cortical receptive field properties. Brain Res. 1971 Sep 24;32(2):460–466. doi: 10.1016/0006-8993(71)90340-4. [DOI] [PubMed] [Google Scholar]
  44. Hoffmann K. P., Stone J., Sherman S. M. Relay of receptive-field properties in dorsal lateral geniculate nucleus of the cat. J Neurophysiol. 1972 Jul;35(4):518–531. doi: 10.1152/jn.1972.35.4.518. [DOI] [PubMed] [Google Scholar]
  45. Holländer H. On the origin of the corticotectal projections in the cat. Exp Brain Res. 1974;21(4):433–439. doi: 10.1007/BF00237905. [DOI] [PubMed] [Google Scholar]
  46. Holländer H., Vanegas H. The projection from the lateral geniculate nucleus onto the visual cortex in the cat. A quantitative study with horseradish-peroxidase. J Comp Neurol. 1977 Jun 1;173(3):519–536. doi: 10.1002/cne.901730308. [DOI] [PubMed] [Google Scholar]
  47. Hornung J. P., Garey L. J. The thalamic projection to cat visual cortex: ultrastructure of neurons identified by Golgi impregnation or retrograde horseradish peroxidase transport. Neuroscience. 1981;6(6):1053–1068. doi: 10.1016/0306-4522(81)90070-1. [DOI] [PubMed] [Google Scholar]
  48. Kelly J. P., Van Essen D. C. Cell structure and function in the visual cortex of the cat. J Physiol. 1974 May;238(3):515–547. doi: 10.1113/jphysiol.1974.sp010541. [DOI] [PMC free article] [PubMed] [Google Scholar]
  49. Kratz K. E., Webb S. V., Sherman S. M. Electrophysiological classification of X- and Y-cells in the cat's lateral geniculate nucleus. Vision Res. 1978;18(4):489–492. doi: 10.1016/0042-6989(78)90061-5. [DOI] [PubMed] [Google Scholar]
  50. LeVay S., Gilbert C. D. Laminar patterns of geniculocortical projection in the cat. Brain Res. 1976 Aug 20;113(1):1–19. doi: 10.1016/0006-8993(76)90002-0. [DOI] [PubMed] [Google Scholar]
  51. Lederer W. J., Spindler A. J., Eisner D. A. Thick slurry bevelling: a new technique for bevelling extremely fine microelectrodes and micropipettes. Pflugers Arch. 1979 Sep;381(3):287–288. doi: 10.1007/BF00583261. [DOI] [PubMed] [Google Scholar]
  52. Leventhal A. G. Evidence that the different classes of relay cells of the cat's lateral geniculate nucleus terminate in different layers of the striate cortex. Exp Brain Res. 1979 Oct;37(2):349–372. doi: 10.1007/BF00237719. [DOI] [PubMed] [Google Scholar]
  53. Lin C. S., Friedlander M. J., Sherman S. M. Morphology of physiologically identified neurons in the visual cortex of the cat. Brain Res. 1979 Aug 24;172(2):344–348. doi: 10.1016/0006-8993(79)90544-4. [DOI] [PubMed] [Google Scholar]
  54. Livingstone M. S., Hubel D. H. Effects of sleep and arousal on the processing of visual information in the cat. Nature. 1981 Jun 18;291(5816):554–561. doi: 10.1038/291554a0. [DOI] [PubMed] [Google Scholar]
  55. Llinas R., Nicholson C. Electrophysiological properties of dendrites and somata in alligator Purkinje cells. J Neurophysiol. 1971 Jul;34(4):532–551. doi: 10.1152/jn.1971.34.4.532. [DOI] [PubMed] [Google Scholar]
  56. Lund J. S., Henry G. H., MacQueen C. L., Harvey A. R. Anatomical organization of the primary visual cortex (area 17) of the cat. A comparison with area 17 of the macaque monkey. J Comp Neurol. 1979 Apr 15;184(4):599–618. doi: 10.1002/cne.901840402. [DOI] [PubMed] [Google Scholar]
  57. Magalhães-Castro H. H., Saraiva P. E., Magalhães-Castro B. Identification of corticotectal cells of the visual cortex of cats by means of horseradish peroxidase. Brain Res. 1975 Jan 17;83(3):474–479. doi: 10.1016/0006-8993(75)90838-0. [DOI] [PubMed] [Google Scholar]
  58. Malmgren L., Olsson Y. A sensitive method for histochemical demonstration of horseradish peroxidase in neurons following retrograde axonal transport. Brain Res. 1978 Jun 16;148(2):279–294. doi: 10.1016/0006-8993(78)90720-5. [DOI] [PubMed] [Google Scholar]
  59. Malpeli J. G. Activity of cells in area 17 of the cat in absence of input from layer a of lateral geniculate nucleus. J Neurophysiol. 1983 Mar;49(3):595–610. doi: 10.1152/jn.1983.49.3.595. [DOI] [PubMed] [Google Scholar]
  60. Martin K. A., Somogyi P., Whitteridge D. Physiological and morphological properties of identified basket cells in the cat's visual cortex. Exp Brain Res. 1983;50(2-3):193–200. doi: 10.1007/BF00239183. [DOI] [PubMed] [Google Scholar]
  61. McCrea R. A., Bishop G. A., Kitai S. T. Intracellular staining of Purkinje cells and their axons with horseradish peroxidase. Brain Res. 1976 Dec 10;118(1):132–136. doi: 10.1016/0006-8993(76)90847-7. [DOI] [PubMed] [Google Scholar]
  62. Mitzdorf U., Singer W. Prominent excitatory pathways in the cat visual cortex (A 17 and A 18): a current source density analysis of electrically evoked potentials. Exp Brain Res. 1978 Nov 15;33(3-4):371–394. doi: 10.1007/BF00235560. [DOI] [PubMed] [Google Scholar]
  63. Morrone M. C., Burr D. C., Maffei L. Functional implications of cross-orientation inhibition of cortical visual cells. I. Neurophysiological evidence. Proc R Soc Lond B Biol Sci. 1982 Oct 22;216(1204):335–354. doi: 10.1098/rspb.1982.0078. [DOI] [PubMed] [Google Scholar]
  64. Movshon J. A., Thompson I. D., Tolhurst D. J. Spatial summation in the receptive fields of simple cells in the cat's striate cortex. J Physiol. 1978 Oct;283:53–77. doi: 10.1113/jphysiol.1978.sp012488. [DOI] [PMC free article] [PubMed] [Google Scholar]
  65. Nauta H. J., Butler A. B., Jane J. A. Some observations on axonal degeneration resulting from superficial lesions of the cerebral cortex. J Comp Neurol. 1973 Aug;150(3):349–360. doi: 10.1002/cne.901500307. [DOI] [PubMed] [Google Scholar]
  66. Nikara T., Bishop P. O., Pettigrew J. D. Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp Brain Res. 1968;6(4):353–372. doi: 10.1007/BF00233184. [DOI] [PubMed] [Google Scholar]
  67. Orban G. A., Kennedy H. The influence of eccentricity on receptive field types and orientation selectivity in areas 17 and 18 of the cat. Brain Res. 1981 Mar 9;208(1):203–208. doi: 10.1016/0006-8993(81)90633-8. [DOI] [PubMed] [Google Scholar]
  68. Palmer L. A., Davis T. L. Receptive-field structure in cat striate cortex. J Neurophysiol. 1981 Aug;46(2):260–276. doi: 10.1152/jn.1981.46.2.260. [DOI] [PubMed] [Google Scholar]
  69. Palmer L. A., Rosenquist A. C. Visual receptive fields of single striate corical units projecting to the superior colliculus in the cat. Brain Res. 1974 Feb 15;67(1):27–42. doi: 10.1016/0006-8993(74)90295-9. [DOI] [PubMed] [Google Scholar]
  70. Parnavelas J. G., Burne R. A., Lin C. S. Distribution and morphology of functionally identified neurons in the visual cortex of the rat. Brain Res. 1983 Feb 14;261(1):21–29. doi: 10.1016/0006-8993(83)91279-9. [DOI] [PubMed] [Google Scholar]
  71. Peters A., Regidor J. A reassessment of the forms of nonpyramidal neurons in area 17 of cat visual cortex. J Comp Neurol. 1981 Dec 20;203(4):685–716. doi: 10.1002/cne.902030408. [DOI] [PubMed] [Google Scholar]
  72. Pettigrew J. D., Nikara T., Bishop P. O. Responses to moving slits by single units in cat striate cortex. Exp Brain Res. 1968;6(4):373–390. doi: 10.1007/BF00233185. [DOI] [PubMed] [Google Scholar]
  73. Shatz C. J., Lindström S., Wiesel T. N. The distribution of afferents representing the right and left eyes in the cat's visual cortex. Brain Res. 1977 Aug 5;131(1):103–116. doi: 10.1016/0006-8993(77)90031-2. [DOI] [PubMed] [Google Scholar]
  74. Sillito A. M. Inhibitory mechanisms influencing complex cell orientation selectivity and their modification at high resting discharge levels. J Physiol. 1979 Apr;289:33–53. doi: 10.1113/jphysiol.1979.sp012723. [DOI] [PMC free article] [PubMed] [Google Scholar]
  75. Sillito A. M., Kemp J. A., Milson J. A., Berardi N. A re-evaluation of the mechanisms underlying simple cell orientation selectivity. Brain Res. 1980 Aug 4;194(2):517–520. doi: 10.1016/0006-8993(80)91234-2. [DOI] [PubMed] [Google Scholar]
  76. Sillito A. M., Kemp J. A., Patel H. Inhibitory interactions contributing to the ocular dominance of monocularly dominated cells in the normal cat striate cortex. Exp Brain Res. 1980;41(1):1–10. doi: 10.1007/BF00236673. [DOI] [PubMed] [Google Scholar]
  77. Singer W., Tretter F., Cynader M. Organization of cat striate cortex: a correlation of receptive-field properties with afferent and efferent connections. J Neurophysiol. 1975 Sep;38(5):1080–1098. doi: 10.1152/jn.1975.38.5.1080. [DOI] [PubMed] [Google Scholar]
  78. So Y. T., Shapley R. Spatial properties of X and Y cells in the lateral geniculate nucleus of the cat and conduction veolcities of their inputs. Exp Brain Res. 1979 Aug 1;36(3):533–550. doi: 10.1007/BF00238521. [DOI] [PubMed] [Google Scholar]
  79. Somogyi P., Hodgson A. J., Smith A. D. An approach to tracing neuron networks in the cerebral cortex and basal ganglia. Combination of Golgi staining, retrograde transport of horseradish peroxidase and anterograde degeneration of synaptic boutons in the same material. Neuroscience. 1979;4(12):1805–1852. doi: 10.1016/0306-4522(79)90059-9. [DOI] [PubMed] [Google Scholar]
  80. Somogyi P., Kisvárday Z. F., Martin K. A., Whitteridge D. Synaptic connections of morphologically identified and physiologically characterized large basket cells in the striate cortex of cat. Neuroscience. 1983 Oct;10(2):261–294. doi: 10.1016/0306-4522(83)90133-1. [DOI] [PubMed] [Google Scholar]
  81. Stanford L. R., Friedlander M. J., Sherman S. M. Morphology of physiologically identified W-cells in the C laminae of the cat's lateral geniculate nucleus. J Neurosci. 1981 Jun;1(6):578–584. doi: 10.1523/JNEUROSCI.01-06-00578.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  82. Stone J., Dreher B., Leventhal A. Hierarchical and parallel mechanisms in the organization of visual cortex. Brain Res. 1979 Dec;180(3):345–394. doi: 10.1016/0165-0173(79)90010-9. [DOI] [PubMed] [Google Scholar]
  83. Stone J. Morphology and physiology of the geniculocortical synapse in the cat: the question of parallel input to the striate cortex. Invest Ophthalmol. 1972 May;11(5):338–346. [PubMed] [Google Scholar]
  84. Sur M., Sherman S. M. Linear and nonlinear W-cells in C-laminae of the cat's lateral geniculate nucleus. J Neurophysiol. 1982 May;47(5):869–884. doi: 10.1152/jn.1982.47.5.869. [DOI] [PubMed] [Google Scholar]
  85. Sur M., Sherman S. M. Retinogeniculate terminations in cats: morphological differences between X and Y cell axons. Science. 1982 Oct 22;218(4570):389–389. doi: 10.1126/science.7123239. [DOI] [PubMed] [Google Scholar]
  86. Wilson P. D., Rowe M. H., Stone J. Properties of relay cells in cat's lateral geniculate nucleus: a comparison of W-cells with X- and Y-cells. J Neurophysiol. 1976 Nov;39(6):1193–1209. doi: 10.1152/jn.1976.39.6.1193. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES