Abstract
The apical membranes of surface cells in the rabbit descending colon possess a significant ionic conductance in parallel to amiloride-blockable Na+ channels. The identity of the ion(s) responsible for the amiloride-insensitive conductance is unknown. The purpose of the present paper was to assess the permeability and net driving forces for K+ and Cl- across this membrane using conventional and ion-sensitive micro-electrode techniques. Intracellular Cl- activity (aiCl) averaged 23 +/- 2 mM with an equilibrium potential (ECl) of -38 +/- 2 mV. This value is less than previous estimates of the electromotive force (e.m.f.) of the amiloride-insensitive pathway (ca. -50 mV). Consequently, Cl- alone cannot account for the amiloride-insensitive conductance. Replacement of Cl- by gluconate in the serosal solution decreased aiCl to 17 +/- 2.8 mM. aiCl was lowered to approximately 1 mM by replacement in the mucosal bath or by replacement in both solutions. The results indicate a low Cl- conductance in the basolateral membrane, in agreement with previous electrophysiological studies of this epithelium. In contrast to Cl-, the chemical driving force for K+ was large enough to support the e.m.f. of the amiloride-insensitive pathway (K+ equilibrium potential, EK = -66 mV). The basolateral membrane potential (Vbl), EK and the intracellular K+ activity (aiK) were decreased in parallel following inhibition of the basolateral Na-K pump, providing evidence that Vbl is largely due to a K+ diffusion potential. In the presence of serosal 10(-4) M-ouabain, aiK appeared to remain above equilibrium and more than doubled after addition of Ba2+ to the serosal bath. Replacement of the mucosal bathing solution with KCl or gluconate Ringer solution largely restored Vbl and the transepithelial potential (VT) in tissues which had been previously treated with ouabain. The restoration of VT was decreased and the transepithelial resistance (RT) was increased by addition of tetraethylammonium to the mucosal bath. The above results suggest that there are at least four routes for ion movement across the apical membrane of rabbit colon surface epithelial cells. These are: (1) an amiloride-sensitive Na+ channel, (2) a K+ conductance, (3) electroneutral uptake of Cl- from lumen to cell interior and (4) an active K+ transport mechanism, also from lumen to cell interior.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clausen C., Wills N. K. Impedance analysis in epithelia. Soc Gen Physiol Ser. 1981;36:79–92. [PubMed] [Google Scholar]
- Erlij D., Smith M. W. Sodium uptake by frog skin and its modification by inhibitors of transepithelial sodium transport. J Physiol. 1973 Jan;228(1):221–239. doi: 10.1113/jphysiol.1973.sp010083. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Frizzell R. A., Koch M. J., Schultz S. G. Ion transport by rabbit colon. I. Active and passive components. J Membr Biol. 1976;27(3):297–316. doi: 10.1007/BF01869142. [DOI] [PubMed] [Google Scholar]
- Fromm M., Schultz S. G. Potassium transport across rabbit descending colon in vitro: evidence for single-file diffusion through a paracellular pathway. J Membr Biol. 1981;63(1-2):93–98. doi: 10.1007/BF01969450. [DOI] [PubMed] [Google Scholar]
- Fromm M., Schultz S. G. Some properties of KCl-filled microelectrodes: correlation of potassium "leakage" with tip resistance. J Membr Biol. 1981;62(3):239–244. doi: 10.1007/BF01998169. [DOI] [PubMed] [Google Scholar]
- KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., Eaton D. C., Diamond J. M. The mechanism of Na+ transport by rabbit urinary bladder. J Membr Biol. 1976 Aug 27;28(1):41–70. doi: 10.1007/BF01869690. [DOI] [PubMed] [Google Scholar]
- Lewis S. A., Wills N. K., Eaton D. C. Basolateral membrane potential of a tight epithelium: ionic diffusion and electrogenic pumps. J Membr Biol. 1978 Jun 28;41(2):117–148. doi: 10.1007/BF01972629. [DOI] [PubMed] [Google Scholar]
- Meier P. C., Lanter F., Ammann D., Steiner R. A., Simon W. Applicability of available ion-selective liquid-membrane microelectrodes to intracellular ion-activity measurements. Pflugers Arch. 1982 Mar;393(1):23–30. doi: 10.1007/BF00582386. [DOI] [PubMed] [Google Scholar]
- Reuss L., Grady T. P. Effects of external sodium and cell membrane potential on intracellular chloride activity in gallbladder epithelium. J Membr Biol. 1979 Dec 12;51(1):15–31. doi: 10.1007/BF01869341. [DOI] [PubMed] [Google Scholar]
- Reuss L., Weinman S. A., Grady T. P. Intracellular K+ activity and its relation to basolateral membrane ion transport in Necturus gallbladder epithelium. J Gen Physiol. 1980 Jul;76(1):33–52. doi: 10.1085/jgp.76.1.33. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Schultz S. G., Frizzell R. A., Nellans H. N. Active sodium transport and the electrophysiology of rabbit colon. J Membr Biol. 1977 May 12;33(3-4):351–384. doi: 10.1007/BF01869524. [DOI] [PubMed] [Google Scholar]
- Thomas R. C., Cohen C. J. A liquid ion-exchanger alternative to KCl for filling intracellular reference microelectrodes. Pflugers Arch. 1981 Apr;390(1):96–98. doi: 10.1007/BF00582719. [DOI] [PubMed] [Google Scholar]
- Thompson S. M., Suzuki Y., Schultz S. G. The electrophysiology of rabbit descending colon. I. Instantaneous transepithelial current-voltage relations and the current-voltage relations of the Na-entry mechanism. J Membr Biol. 1982;66(1):41–54. doi: 10.1007/BF01868480. [DOI] [PubMed] [Google Scholar]
- Thompson S. M., Suzuki Y., Schultz S. G. The electrophysiology of rabbit descending colon. II. Current-voltage relations of the apical membrane, the basolateral membrane, and the parallel pathways. J Membr Biol. 1982;66(1):55–61. doi: 10.1007/BF01868481. [DOI] [PubMed] [Google Scholar]
- Welsh M. J., Smith P. L., Fromm M., Frizzell R. A. Crypts are the site of intestinal fluid and electrolyte secretion. Science. 1982 Dec 17;218(4578):1219–1221. doi: 10.1126/science.6293054. [DOI] [PubMed] [Google Scholar]
- Wills N. K., Biagi B. Active potassium transport by rabbit descending colon epithelium. J Membr Biol. 1982;64(3):195–203. doi: 10.1007/BF01870886. [DOI] [PubMed] [Google Scholar]
- Wills N. K., Eaton D. C., Lewis S. A., Ifshin M. S. Current-voltage relationship of the basolateral membrane of a tight epithelium. Biochim Biophys Acta. 1979 Aug 23;555(3):519–523. doi: 10.1016/0005-2736(79)90405-x. [DOI] [PubMed] [Google Scholar]
- Wills N. K., Lewis S. A., Eaton D. C. Active and passive properties of rabbit descending colon: a microelectrode and nystatin study. J Membr Biol. 1979 Mar 28;45(1-2):81–108. doi: 10.1007/BF01869296. [DOI] [PubMed] [Google Scholar]
- Wills N. K., Lewis S. A. Intracellular Na+ activity as a function of Na+ transport rate across a tight epithelium. Biophys J. 1980 Apr;30(1):181–186. doi: 10.1016/S0006-3495(80)85086-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Wills N. K., Zeiske W., Van Driessche W. Noise analysis reveals K+ channel conductance fluctuations in the apical membrane of rabbit colon. J Membr Biol. 1982;69(3):187–197. doi: 10.1007/BF01870398. [DOI] [PubMed] [Google Scholar]
- Zeiske W., Wills N. K., Van Driessche W. Na+ channels and amiloride-induced noise in the mammalian colon epithelium. Biochim Biophys Acta. 1982 May 21;688(1):201–210. doi: 10.1016/0005-2736(82)90595-8. [DOI] [PubMed] [Google Scholar]
