Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Feb;359:151–162. doi: 10.1113/jphysiol.1985.sp015579

Efflux of 5-hydroxytryptamine and noradrenaline into spinal cord superfusates during stimulation of the rat medulla.

D L Hammond, G M Tyce, T L Yaksh
PMCID: PMC1193369  PMID: 2582112

Abstract

High pressure liquid chromatography with electrochemical detection was used to quantify the efflux, in the same sample, of endogenous 5-hydroxytryptamine (5-HT), noradrenaline (NA), and 5-hydroxyindoleacetic acid (5-HIAA) into superfusates of the rat spinal cord in vivo. The efflux of these three agents was measured prior to, and during, electrical stimulation of the nucleus raphe magnus (n.r.m.) and nucleus reticularis paragigantocellularis (n.r.p.g.), two medullary nuclei implicated in antinociception. In untreated rats, basal efflux of 5-HT and NA was 0.21 and 0.12 ng/ml of superfusate respectively; the basal efflux of 5-HIAA was 18.17 ng/ml. Stimulation of the n.r.m. and n.r.p.g. in these animals increased the efflux of 5-HT and 5-HIAA, but did not alter the efflux of NA. 60 min after administration of fluoxetine (10 mg/kg, I.P.), a 5-HT uptake inhibitor, basal efflux of 5-HT and NA was unaltered, but the basal efflux of 5-HIAA was decreased. In these rats, stimulation of the n.r.m. and n.r.p.g. increased the efflux of 5-HT and of NA. The efflux of 5-HIAA was not altered. In rats pre-treated with both fluoxetine and desipramine (10 mg/kg, I.P.), the basal efflux of NA was increased while that of 5-HIAA was decreased; the basal efflux of 5-HT was not affected. The efflux of NA, but not of 5-HT, was increased in these animals during stimulation of the n.r.m. and n.r.p.g. The efflux of 5-HIAA was not changed by stimulation. Addition of fluoxetine alone or with desipramine to the superfusate in high concentrations greatly increased basal efflux of 5-HT. Failure of stimulation of the ventromedial medulla to increase the efflux of 5-HT in these animals may be related to feed-back inhibition of release by the high concentration of 5-HT initially present in the superfusate. These results indicate that electrical stimulation of the n.r.m. and n.r.p.g. increases the efflux of endogenous 5-HT and NA from the spinal cord. These stimulation sites are coincident with brain-stem sites at which stimulation produces antinociception by activation of spinal serotonergic and noradrenergic receptors. Thus, the ability of stimulation at these sites to evoke the spinal release of the probable neurotransmitters further supports the hypothesis that the antinociceptive effect is mediated by activation of serotonergic and noradrenergic neurones projecting to the spinal cord.

Full text

PDF
151

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akaike A., Shibata T., Satoh M., Takagi H. Analgesia induced by microinjection of morphine into, and electrical stimulation of, the nucleus reticularis paragigantocellularis of rat medulla oblongata. Neuropharmacology. 1978 Sep;17(9):775–778. doi: 10.1016/0028-3908(78)90093-x. [DOI] [PubMed] [Google Scholar]
  2. Basbaum A. I., Clanton C. H., Fields H. L. Three bulbospinal pathways from the rostral medulla of the cat: an autoradiographic study of pain modulating systems. J Comp Neurol. 1978 Mar 15;178(2):209–224. doi: 10.1002/cne.901780203. [DOI] [PubMed] [Google Scholar]
  3. Basbaum A. I., Fields H. L. The origin of descending pathways in the dorsolateral funiculus of the spinal cord of the cat and rat: further studies on the anatomy of pain modulation. J Comp Neurol. 1979 Oct 1;187(3):513–531. doi: 10.1002/cne.901870304. [DOI] [PubMed] [Google Scholar]
  4. Bourgoin S., Oliveras J. L., Bruxelle J., Hamon M., Besson J. M. Electrical stimulation of the nucleus raphe magnus in the rat. Effects on 5-HT metabolism in the spinal cord. Brain Res. 1980 Aug 4;194(2):377–389. doi: 10.1016/0006-8993(80)91219-6. [DOI] [PubMed] [Google Scholar]
  5. Bowker R. M., Westlund K. N., Coulter J. D. Origins of serotonergic projections to the spinal cord in rat: an immunocytochemical-retrograde transport study. Brain Res. 1981 Dec 7;226(1-2):187–199. doi: 10.1016/0006-8993(81)91092-1. [DOI] [PubMed] [Google Scholar]
  6. Göthert M., Huth H. Alpha-adrenoceptor-mediated modulation of 5-hydroxytryptamine release from rat brain cortex slices. Naunyn Schmiedebergs Arch Pharmacol. 1980 Aug;313(1):21–26. doi: 10.1007/BF00505800. [DOI] [PubMed] [Google Scholar]
  7. Hammond D. L., Levy R. A., Proudfit H. K. Hypoalgesia induced by microinjection of a norepinephrine antagonist in the raphe magnus: reversal by intrathecal administration of a serotonin antagonist. Brain Res. 1980 Nov 17;201(2):475–479. doi: 10.1016/0006-8993(80)91056-2. [DOI] [PubMed] [Google Scholar]
  8. Hammond D. L., Tyce G. M., Yaksh T. L. Drug-induced alterations in the efflux of 5-hydroxytryptamine and of 5-hydroxyindoleacetic acid into superfusates of the rat spinal cord. Eur J Pharmacol. 1983 Mar 4;87(4):441–448. doi: 10.1016/0014-2999(83)90083-3. [DOI] [PubMed] [Google Scholar]
  9. Hammond D. L., Yaksh T. L. Antagonism of stimulation-produced antinociception by intrathecal administration of methysergide or phentolamine. Brain Res. 1984 Apr 30;298(2):329–337. doi: 10.1016/0006-8993(84)91432-x. [DOI] [PubMed] [Google Scholar]
  10. Harms H. H. The antidepressant agents desipramine, fluoxetine, fluvoxamine and norzimelidine inhibit uptake of [3H]noradrenaline and [3H]5-hydroxytryptamine in slices of human and rat cortical brain tissue. Brain Res. 1983 Sep 19;275(1):99–104. doi: 10.1016/0006-8993(83)90421-3. [DOI] [PubMed] [Google Scholar]
  11. Howe J. R., Wang J. Y., Yaksh T. L. Selective antagonism of the antinociceptive effect of intrathecally applied alpha adrenergic agonists by intrathecal prazosin and intrathecal yohimbine. J Pharmacol Exp Ther. 1983 Mar;224(3):552–558. [PubMed] [Google Scholar]
  12. Kuraishi Y., Harada Y., Satoh M., Takagi H. Antagonism by phenoxybenzamine of the analgesic effect of morphine injected into the nucleus reticularis gigantocellularis of the rat. Neuropharmacology. 1979 Jan;18(1):107–110. doi: 10.1016/0028-3908(79)90016-9. [DOI] [PubMed] [Google Scholar]
  13. Martin G. F., Cabana T., Humbertson A. O., Jr, Laxson L. C., Panneton W. M. Spinal projections from the medullary reticular formation of the North American opossum: heterogeneity. J Comp Neurol. 1981 Mar 10;196(4):663–682. doi: 10.1002/cne.901960411. [DOI] [PubMed] [Google Scholar]
  14. Martin R. F., Jordan L. M., Willis W. D. Differential projections of cat medullary raphe neurons demonstrated by retrograde labelling following spinal cord lesions. J Comp Neurol. 1978 Nov 1;182(1):77–88. doi: 10.1002/cne.901820106. [DOI] [PubMed] [Google Scholar]
  15. Muldoon S. M., Tyce G. M., Moyer T. P., Rorie D. K. Measurement of endogenous norepinephrine overflow from canine saphenous veins. Am J Physiol. 1979 Feb;236(2):H263–H267. doi: 10.1152/ajpheart.1979.236.2.H263. [DOI] [PubMed] [Google Scholar]
  16. Oliveras J. L., Bourgoin S., Hery F., Besson J. M., Hamon M. The topographical distribution of serotoninergic terminals in the spinal cord of the cat: biochemical mapping by the combined use of microdissection and microassay procedures. Brain Res. 1977 Dec 23;138(3):393–406. doi: 10.1016/0006-8993(77)90680-1. [DOI] [PubMed] [Google Scholar]
  17. Oliveras J. L., Redjemi F., Guilbaud G., Besson J. M. Analgesia induced by electrical stimulation of the inferior centralis nucleus of the raphe in the cat. Pain. 1975 Jun;1(2):139–145. doi: 10.1016/0304-3959(75)90098-6. [DOI] [PubMed] [Google Scholar]
  18. Poitras D., Parent A. Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J Comp Neurol. 1978 Jun 15;179(4):699–717. doi: 10.1002/cne.901790402. [DOI] [PubMed] [Google Scholar]
  19. Proudfit H. K., Anderson E. G. Morphine analgesia: blockade by raphe magnus lesions. Brain Res. 1975 Nov 21;98(3):612–618. doi: 10.1016/0006-8993(75)90380-7. [DOI] [PubMed] [Google Scholar]
  20. Raiteri M., Maura G., Versace P. Functional evidence for two stereochemically different alpha-2 adrenoceptors regulating central norepinephrine and serotonin release. J Pharmacol Exp Ther. 1983 Mar;224(3):679–684. [PubMed] [Google Scholar]
  21. Reddy S. V., Maderdrut J. L., Yaksh T. L. Spinal cord pharmacology of adrenergic agonist-mediated antinociception. J Pharmacol Exp Ther. 1980 Jun;213(3):525–533. [PubMed] [Google Scholar]
  22. Rivot J. P., Chiang C. Y., Besson J. M. Increase of serotonin metabolism within the dorsal horn of the spinal cord during nucleus raphe magnus stimulation, as revealed by in vivo electrochemical detection. Brain Res. 1982 Apr 22;238(1):117–126. doi: 10.1016/0006-8993(82)90775-2. [DOI] [PubMed] [Google Scholar]
  23. Ross S. B., Renyi A. L. Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of 3-H-noradrenaline and 14-C-5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain. Acta Pharmacol Toxicol (Copenh) 1975;36(Suppl 5):382–394. doi: 10.1111/j.1600-0773.1975.tb00806.x. [DOI] [PubMed] [Google Scholar]
  24. Sagen J., Proudfit H. K. Hypoalgesia induced by blockade of noradrenergic projections to the raphe magnus: reversal by blockade of noradrenergic projections to the spinal cord. Brain Res. 1981 Nov 2;223(2):391–396. doi: 10.1016/0006-8993(81)91153-7. [DOI] [PubMed] [Google Scholar]
  25. Sagen J., Winker M. A., Proudfit H. K. Hypoalgesia induced by the local injection of phentolamine in the nucleus raphe magnus: blockade by depletion of spinal cord monoamines. Pain. 1983 Jul;16(3):253–263. doi: 10.1016/0304-3959(83)90113-6. [DOI] [PubMed] [Google Scholar]
  26. Satoh M., Akaike A., Nakazawa T., Takagi H. Evidence for involvement of separate mechanisms in the production of analgesia by electrical stimulation of the nucleus reticularis paragigantocellularis and nucleus raphe magnus in the rat. Brain Res. 1980 Aug 4;194(2):525–529. doi: 10.1016/0006-8993(80)91236-6. [DOI] [PubMed] [Google Scholar]
  27. Satoh M., Oku R., Akaike A. Analgesia produced by microinjection of L-glutamate into the rostral ventromedial bulbar nuclei of the rat and its inhibition by intrathecal alpha-adrenergic blocking agents. Brain Res. 1983 Feb 21;261(2):361–364. doi: 10.1016/0006-8993(83)90646-7. [DOI] [PubMed] [Google Scholar]
  28. Schmauss C., Hammond D. L., Ochi J. W., Yaksh T. L. Pharmacological antagonism of the antinociceptive effects of serotonin in the rat spinal cord. Eur J Pharmacol. 1983 Jun 17;90(4):349–357. doi: 10.1016/0014-2999(83)90556-3. [DOI] [PubMed] [Google Scholar]
  29. Steinbusch H. W. Distribution of serotonin-immunoreactivity in the central nervous system of the rat-cell bodies and terminals. Neuroscience. 1981;6(4):557–618. doi: 10.1016/0306-4522(81)90146-9. [DOI] [PubMed] [Google Scholar]
  30. Swanson L. W., Hartman B. K. The central adrenergic system. An immunofluorescence study of the location of cell bodies and their efferent connections in the rat utilizing dopamine-beta-hydroxylase as a marker. J Comp Neurol. 1975 Oct 15;163(4):467–505. doi: 10.1002/cne.901630406. [DOI] [PubMed] [Google Scholar]
  31. Tyce G. M., Yaksh T. L. Monoamine release from cat spinal cord by somatic stimuli: an intrinsic modulatory system. J Physiol. 1981 May;314:513–529. doi: 10.1113/jphysiol.1981.sp013722. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. Watkins L. R., Griffin G., Leichnetz G. R., Mayer D. J. The somatotopic organization of the nucleus raphe magnus and surrounding brain stem structures as revealed by HRP slow-release gels. Brain Res. 1980 Jan 6;181(1):1–15. doi: 10.1016/0006-8993(80)91255-x. [DOI] [PubMed] [Google Scholar]
  33. Westlund K. N., Bowker R. M., Ziegler M. G., Coulter J. D. Noradrenergic projections to the spinal cord of the rat. Brain Res. 1983 Mar 14;263(1):15–31. doi: 10.1016/0006-8993(83)91196-4. [DOI] [PubMed] [Google Scholar]
  34. Wong D. T., Bymaster F. P., Horng J. S., Molloy B. B. A new selective inhibitor for uptake of serotonin into synaptosomes of rat brain: 3-(p-trifluoromethylphenoxy). N-methyl-3-phenylpropylamine. J Pharmacol Exp Ther. 1975 Jun;193(3):804–811. [PubMed] [Google Scholar]
  35. Yaksh T. L. Direct evidence that spinal serotonin and noradrenaline terminals mediate the spinal antinociceptive effects of morphine in the periaqueductal gray. Brain Res. 1979 Jan 5;160(1):180–185. doi: 10.1016/0006-8993(79)90616-4. [DOI] [PubMed] [Google Scholar]
  36. Yaksh T. L., Tyce G. M. Microinjection of morphine into the periaqueductal gray evokes the release of serotonin from spinal cord. Brain Res. 1979 Jul 27;171(1):176–181. doi: 10.1016/0006-8993(79)90747-9. [DOI] [PubMed] [Google Scholar]
  37. Yaksh T. L., Tyce G. M. Resting and K+-evoked release of serotonin and norephinephrine in vivo from the rat and cat spinal cord. Brain Res. 1980 Jun 16;192(1):133–146. doi: 10.1016/0006-8993(80)91014-8. [DOI] [PubMed] [Google Scholar]
  38. Yaksh T. L., Wilson P. R. Spinal serotonin terminal system mediates antinociception. J Pharmacol Exp Ther. 1979 Mar;208(3):446–453. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES