Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Feb;359:447–458. doi: 10.1113/jphysiol.1985.sp015595

Effects of angiotensin or carbachol on sodium intake and excretion in adrenalectomized or deoxycorticosterone-treated rats.

J T Fitzsimons, L M Fuller
PMCID: PMC1193385  PMID: 3999047

Abstract

In adrenalectomized, deoxycorticosterone-treated and normal rats, injection of angiotensin II through a cannula implanted in the preoptic region caused increased intakes of hypertonic NaCl and water when both fluids were available, whereas injection of carbachol through the same cannula only caused increased water intake. Carbachol depressed NaCl intake of adrenalectomized rats that were allowed access to hypertonic NaCl after being deprived of it for 24 h. Angiotensin-stimulated rats were more likely to go into positive sodium balance than controls, whereas carbachol-stimulated animals were more likely to go into negative balance. After angiotensin, adrenalectomized or deoxycorticosterone-treated rats drank a larger proportion of their total fluid intake as hypertonic NaCl than did normal rats. Angiotensin caused significant increases in sodium excretion in normal, isotonic saline-loaded and deoxycorticosterone-treated rats, but not in adrenalectomized rats, although angiotensin caused increased intakes of NaCl in all groups. On the other hand, carbachol caused a significant increase in sodium excretion at 1 h in all groups despite the absence of an increase in NaCl intake. After angiotensin, only normal rats showed a significant kaliuresis at 1 h, whereas all carbachol-injected rats showed increased potassium excretion. Therefore, angiotensin is a primary stimulus to increased sodium appetite, normally acting in conjunction with other stimuli which enhance its effect, whereas carbachol is a central inhibitor of sodium appetite.

Full text

PDF
447

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Avrith D. B., Fitzsimons J. T. Increased sodium appetite in the rat induced by intracranial administration of components of the renin-angiotensin system. J Physiol. 1980 Apr;301:349–364. doi: 10.1113/jphysiol.1980.sp013210. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Avrith D. B., Fitzsimons J. T. Renin-induced sodium appetite: effects on sodium balance and mediation by angiotensin in the rat. J Physiol. 1983 Apr;337:479–496. doi: 10.1113/jphysiol.1983.sp014637. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bryant R. W., Epstein A. N., Fitzsimons J. T., Fluharty S. J. Arousal of a specific and persistent sodium appetite in the rat with continuous intracerebroventricular infusion of angiotensin II. J Physiol. 1980 Apr;301:365–382. doi: 10.1113/jphysiol.1980.sp013211. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Buggy J., Fisher A. E. Evidence for a dual central role for angiotensin in water and sodium intake. Nature. 1974 Aug 30;250(5469):733–735. doi: 10.1038/250733a0. [DOI] [PubMed] [Google Scholar]
  5. Chiaraviglio E. Effect of renin-angiotensin system on sodium intake. J Physiol. 1976 Feb;255(1):57–66. doi: 10.1113/jphysiol.1976.sp011269. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Coghlan J. P., Considine P. J., Denton D. A., Fei D. T., Leksell L. G., McKinley M. J., Muller A. F., Tarjan E., Weisinger R. S., Bradshaw R. A. Sodium appetite in sheep induced by cerebral ventricular infusion of angiotensin: comparison with sodium deficiency. Science. 1981 Oct 9;214(4517):195–197. doi: 10.1126/science.6169149. [DOI] [PubMed] [Google Scholar]
  7. FISHER A. E., COURY J. N. Cholinergic tracing of a central neural circuit underlying the thirst drive. Science. 1962 Nov 9;138(3541):691–693. doi: 10.1126/science.138.3541.691. [DOI] [PubMed] [Google Scholar]
  8. Fitzsimons J. T., Wirth J. B. The renin-angiotensin system and sodium appetite. J Physiol. 1978 Jan;274:63–80. doi: 10.1113/jphysiol.1978.sp012134. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Fluharty S. J., Epstein A. N. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: II. Synergistic interaction with systemic mineralocorticoids. Behav Neurosci. 1983 Oct;97(5):746–758. doi: 10.1037//0735-7044.97.5.746. [DOI] [PubMed] [Google Scholar]
  10. Fluharty S. J., Manaker S. Sodium appetite elicited by intracerebroventricular infusion of angiotensin II in the rat: I. Relation to urinary sodium excretion. Behav Neurosci. 1983 Oct;97(5):738–745. doi: 10.1037//0735-7044.97.5.738. [DOI] [PubMed] [Google Scholar]
  11. Ganong W. F. The brain renin-angiotensin system. Annu Rev Physiol. 1984;46:17–31. doi: 10.1146/annurev.ph.46.030184.000313. [DOI] [PubMed] [Google Scholar]
  12. Halperin E. S., Summy-Long J. Y., Keil L. C., Severs W. B. Aspects of salt/water balance after cerebroventricular infusion of angiotensin II. Brain Res. 1981 Jan 26;205(1):219–221. doi: 10.1016/0006-8993(81)90736-8. [DOI] [PubMed] [Google Scholar]
  13. Perez S. E., Silva-Netto C. R., Saad W. A., Camargo L. A., Antunes-Rodrigues J. Interaction between cholinergic and osmolar stimulation of the lateral hypothalamic area (LHA) on sodium and potassium excretion. Physiol Behav. 1984 Feb;32(2):191–194. doi: 10.1016/0031-9384(84)90128-8. [DOI] [PubMed] [Google Scholar]
  14. Severs W. B., Daniels-Severs A., Summy-Long J., Radio G. J. Effects of centrally administered angiotensin II on salt and water excretion. Pharmacology. 1971;6(4):242–252. doi: 10.1159/000136249. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES