Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Sep;354:121–137. doi: 10.1113/jphysiol.1984.sp015367

Relationship between presynaptic membrane potential and acetylcholine release in synaptosomes from Torpedo electric organ.

F M Meunier
PMCID: PMC1193403  PMID: 6207289

Abstract

The membrane potential of purely cholinergic synaptosomes isolated from Torpedo electric organ was monitored with fluorescent carbocyanine dyes. An increased fluorescence was associated with depolarization and a quenching with hyperpolarization. Fluorescence data provided evidence that Torpedo synaptosomes have a membrane potential mainly driven by a K+ diffusion potential and a membrane potential of about -50 mV could be estimated after calibration of fluorescence signals with ionophore antibiotics. The release of acetylcholine (ACh) from Torpedo synaptosomes was monitored continuously by measuring the light emitted by a chemiluminescent method (Israël & Lesbats, 1981 a). Using fluorescence data, the release of ACh was expressed as a function of membrane potential. The relationship between presynaptic potential and transmitter release as determined by biochemical methods at cholinergic nerve endings showed striking similarities to that observed at the squid giant synapse. Several substances were also tested with regard to their depolarizing and releasing properties and it was found that the toxin isolated from the venom of the annelid Glycera convoluta, which induced a large increase in quantal release of transmitter (Manaranche, Thieffry, & Israël, 1980) promoted a depolarization of Torpedo synaptosomes in addition to ACh release.

Full text

PDF
121

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Archibald J. T., White T. D. Rapid reversal of internal Na+ and K+ contents of synaptosomes by ouabain. Nature. 1974 Dec 13;252(5484):595–596. doi: 10.1038/252595a0. [DOI] [PubMed] [Google Scholar]
  2. Baba A., Cooper J. R. The action of black widow spider venom on cholinergic mechanisms in synaptosomes. J Neurochem. 1980 Jun;34(6):1369–1379. doi: 10.1111/j.1471-4159.1980.tb11217.x. [DOI] [PubMed] [Google Scholar]
  3. Baker P. F. Transport and metabolism of calcium ions in nerve. Prog Biophys Mol Biol. 1972;24:177–223. doi: 10.1016/0079-6107(72)90007-7. [DOI] [PubMed] [Google Scholar]
  4. Blaustein M. P., Goldring J. M. Membrane potentials in pinched-off presynaptic nerve ternimals monitored with a fluorescent probe: evidence that synaptosomes have potassium diffusion potentials. J Physiol. 1975 Jun;247(3):589–615. doi: 10.1113/jphysiol.1975.sp010949. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Blaustein M. P., Oborn C. J. The influence of sodium on calcium fluxes in pinched-off nerve terminals in vitro. J Physiol. 1975 Jun;247(3):657–686. doi: 10.1113/jphysiol.1975.sp010951. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Brigant J. L., Mallart A. Presynaptic currents in mouse motor endings. J Physiol. 1982 Dec;333:619–636. doi: 10.1113/jphysiol.1982.sp014472. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Campbell C. W. The Na+, K+, Cl- contents and derived membrane potentials of presynaptic nerve endings in vitro. Brain Res. 1976 Jan 23;101(3):594–599. doi: 10.1016/0006-8993(76)90484-4. [DOI] [PubMed] [Google Scholar]
  8. Cotman C. W., Haycock J. W., White W. F. Stimulus-secretion coupling processes in brain: analysis of noradrenaline and gamma-aminobutyric acid release. J Physiol. 1976 Jan;254(2):475–505. doi: 10.1113/jphysiol.1976.sp011241. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deutsch C., Rafalowska U. Transmembrane electrical potential measurements in rat brain synaptosomes. FEBS Lett. 1979 Dec 1;108(1):274–278. doi: 10.1016/0014-5793(79)81227-2. [DOI] [PubMed] [Google Scholar]
  10. Freedman J. C., Hoffman J. F. The relation between dicarbocyanine dye fluorescence and the membrane potential of human red blood cells set at varying Donnan equilibria. J Gen Physiol. 1979 Aug;74(2):187–212. doi: 10.1085/jgp.74.2.187. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hargittai P., Agoston D., Nagy A. Comparative biochemical and biophysical studies on rat brain synaptosomes. FEBS Lett. 1982 Jan 11;137(1):67–70. doi: 10.1016/0014-5793(82)80316-5. [DOI] [PubMed] [Google Scholar]
  12. Hladky S. B., Rink T. J. Potential difference and the distribution of ions across the human red blood cell membrane; a study of the mechanism by which the fluorescent cation, diS-C3-(5) reports membrane potential. J Physiol. 1976 Dec;263(2):287–319. doi: 10.1113/jphysiol.1976.sp011632. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Israël M., Lesbats B. Continuous determination by a chemiluminescent method of acetylcholine release and compartmentation in Torpedo electric organ synaptosomes. J Neurochem. 1981 Dec;37(6):1475–1483. doi: 10.1111/j.1471-4159.1981.tb06317.x. [DOI] [PubMed] [Google Scholar]
  14. Israël M., Manaranche R., Mastour-Frachon P., Morel N. Isolation of pure cholinergic nerve endings from the electric organ of Torpedo marmorata. Biochem J. 1976 Oct 15;160(1):113–115. doi: 10.1042/bj1600113. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Israël M., Manaranche R., Morel N., Dedieu J. C., Gulik-Krzywicki T., Lesbats B. Redistribution of intramembrane particles related to acetylcholine release by cholinergic synaptosomes. J Ultrastruct Res. 1981 May;75(2):162–178. doi: 10.1016/s0022-5320(81)80132-3. [DOI] [PubMed] [Google Scholar]
  16. Katz B., Miledi R. A study of synaptic transmission in the absence of nerve impulses. J Physiol. 1967 Sep;192(2):407–436. doi: 10.1113/jphysiol.1967.sp008307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Katz B., Miledi R. The effect of prolonged depolarization on synaptic transfer in the stellate ganglion of the squid. J Physiol. 1971 Jul;216(2):503–512. doi: 10.1113/jphysiol.1971.sp009537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levitan H., Barker J. L. Salicylate: a structure-activity study of its effects on membrane permeability. Science. 1972 Jun 30;176(4042):1423–1425. doi: 10.1126/science.176.4042.1423. [DOI] [PubMed] [Google Scholar]
  19. Li P. P., White T. D. Rapid effects of veratridine, tetrodotoxin, gramicidin D, valinomycin and NaCN on the Na+, K+ and ATP contents of synaptosomes. J Neurochem. 1977 May;28(5):967–975. doi: 10.1111/j.1471-4159.1977.tb10658.x. [DOI] [PubMed] [Google Scholar]
  20. Llinás R., Steinberg I. Z., Walton K. Presynaptic calcium currents and their relation to synaptic transmission: voltage clamp study in squid giant synapse and theoretical model for the calcium gate. Proc Natl Acad Sci U S A. 1976 Aug;73(8):2918–2922. doi: 10.1073/pnas.73.8.2918. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Llinás R., Sugimori M., Simon S. M. Transmission by presynaptic spike-like depolarization in the squid giant synapse. Proc Natl Acad Sci U S A. 1982 Apr;79(7):2415–2419. doi: 10.1073/pnas.79.7.2415. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Manaranche R., Thieffry M., Israel M. Effect of the venom of Glycera convoluta on the spontaneous quantal release of transmitter. J Cell Biol. 1980 May;85(2):446–458. doi: 10.1083/jcb.85.2.446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Michaelson D. M., Sokolovsky M. Induced acetylcholine release from active purely cholinergic Torpedo synaptosomes. J Neurochem. 1978 Jan;30(1):217–230. doi: 10.1111/j.1471-4159.1978.tb07055.x. [DOI] [PubMed] [Google Scholar]
  24. Moreau M., Changeux J. P. Studies on the electrogenic action of acetylcholine with Torpedo marmorata electric organ. I. Pharmacological properties of the electroplaque. J Mol Biol. 1976 Sep 25;106(3):457–467. doi: 10.1016/0022-2836(76)90246-1. [DOI] [PubMed] [Google Scholar]
  25. Morel N., Israel M., Manaranche R., Mastour-Frachon P. Isolation of pure cholinergic nerve endings from Torpedo electric organ. Evaluation of their metabolic properties. J Cell Biol. 1977 Oct;75(1):43–55. doi: 10.1083/jcb.75.1.43. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Morel N., Meunier F. M. Simultaneous release of acetylcholine and ATP from stimulated cholinergic synaptosomes. J Neurochem. 1981 May;36(5):1766–1773. doi: 10.1111/j.1471-4159.1981.tb00429.x. [DOI] [PubMed] [Google Scholar]
  27. Morel N., Thieffry M., Manaranche R. Binding of a Glycera convoluta neurotoxin to cholinergic nerve terminal plasma membranes. J Cell Biol. 1983 Dec;97(6):1737–1744. doi: 10.1083/jcb.97.6.1737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Nicholls D. G., Rugolo M., Scott I. G., Meldolesi J. alpha-latrotoxin of black widow spider venom depolarizes the plasma membrane, induces massive calcium influx, and stimulates transmitter release in guinea pig brain synaptosomes. Proc Natl Acad Sci U S A. 1982 Dec;79(24):7924–7928. doi: 10.1073/pnas.79.24.7924. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Nordmann J. J., Desmazes J. P., Georgescauld D. The relationship between the membrane potential of neurosecretory nerve endings, as measured by a voltage-sensitive dye, and the release of neurohypophysial hormones. Neuroscience. 1982 Mar;7(3):731–737. doi: 10.1016/0306-4522(82)90078-1. [DOI] [PubMed] [Google Scholar]
  30. Podleski T., Changeux J. P. Effects associated with permeability changes caused by gramicidin A in electroplax membrane. Nature. 1969 Feb 8;221(5180):541–545. doi: 10.1038/221541a0. [DOI] [PubMed] [Google Scholar]
  31. Pressman B. C. Biological applications of ionophores. Annu Rev Biochem. 1976;45:501–530. doi: 10.1146/annurev.bi.45.070176.002441. [DOI] [PubMed] [Google Scholar]
  32. Richardson G. P., Krenz W. D., Kirk C., Fox G. Q. Organotypic culture of embryonic electromotor system tissues from Torpedo marmorata. Neuroscience. 1981;6(6):1181–1200. doi: 10.1016/0306-4522(81)90082-8. [DOI] [PubMed] [Google Scholar]
  33. Richardson P. J., Whittaker V. P. The Na+ and K+ content of isolated Torpedo synaptosomes and its effect on choline uptake. J Neurochem. 1981 Apr;36(4):1536–1542. doi: 10.1111/j.1471-4159.1981.tb00597.x. [DOI] [PubMed] [Google Scholar]
  34. Scott I. D., Nicholls D. G. Energy transduction in intact synaptosomes. Influence of plasma-membrane depolarization on the respiration and membrane potential of internal mitochondria determined in situ. Biochem J. 1980 Jan 15;186(1):21–33. doi: 10.1042/bj1860021. [DOI] [PMC free article] [PubMed] [Google Scholar]
  35. Sen I., Cooper J. R. Similarities of beta-bungarotoxin and phospholipase A2 and their mechanism of action. J Neurochem. 1978 Jun;30(6):1369–1372. doi: 10.1111/j.1471-4159.1978.tb10468.x. [DOI] [PubMed] [Google Scholar]
  36. Sims P. J., Waggoner A. S., Wang C. H., Hoffman J. F. Studies on the mechanism by which cyanine dyes measure membrane potential in red blood cells and phosphatidylcholine vesicles. Biochemistry. 1974 Jul 30;13(16):3315–3330. doi: 10.1021/bi00713a022. [DOI] [PubMed] [Google Scholar]
  37. Soria B. Properties of miniature post-synaptic currents at the Torpedo marmorata nerve-electroplate junction. Q J Exp Physiol. 1983 Apr;68(2):189–202. doi: 10.1113/expphysiol.1983.sp002711. [DOI] [PubMed] [Google Scholar]
  38. Thieffry M., Bon C., Manaranche R., Saliou B., Israël M. Partial purification of the Glycera convoluta venom components responsible for its presynaptic effects. J Physiol (Paris) 1982;78(4):343–347. [PubMed] [Google Scholar]
  39. Waggoner A. S. Dye indicators of membrane potential. Annu Rev Biophys Bioeng. 1979;8:47–68. doi: 10.1146/annurev.bb.08.060179.000403. [DOI] [PubMed] [Google Scholar]
  40. Waggoner A. Optical probes of membrane potential. J Membr Biol. 1976 Jun 30;27(4):317–334. doi: 10.1007/BF01869143. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES