Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Mar;360:51–68. doi: 10.1113/jphysiol.1985.sp015603

Slow depolarizing and hyperpolarizing currents which mediate bursting in Aplysia neurone R15.

W B Adams
PMCID: PMC1193447  PMID: 3989723

Abstract

Interruption of normal bursting activity by application of a voltage clamp reveals that action potentials in Aplysia neurone R15 are followed by two slow currents that long outlast the currents produced during the action potentials. Similar currents are seen following simulation of an action potential with a brief depolarizing pulse delivered under continuous voltage clamp. One of these currents, herein called ID, is an inward, or depolarizing current 0.5-5 nA in amplitude that reaches a peak 300-500 ms after the action potential. It produces the depolarizing after-potential that follows action potentials in this cell and is responsible also for the grouping together of action potentials into bursts. The second current, herein called IH, is an outward, or hyperpolarizing current 0.1-2 nA in amplitude that reaches a peak in 2-10 s and is still present for many tens of seconds following the action potential. IH mediates the interburst hyperpolarization. Both currents summate temporally during the burst. Despite changes in the amplitude and duration of action potentials during the burst, each action potential adds nearly constant increments to the summated amplitudes of ID and IH. The summated amplitude of ID grows during the first few action potentials and gives rise to the increased rate of depolarization and the increased firing rate seen during the first half of the burst. Due to its slower kinetics, IH summates throughout the burst until its summated amplitude is large enough to cause the cell to hyperpolarize, thereby bringing the burst to an end. When the normal burst is interrupted by application of the voltage clamp, the ID and IH current peaks are followed by a current which approaches a more negative steady-state level with a time course that consists of at least two phases. The first phase is exponential with a time constant of 15-30 s. Under continuous voltage clamp, the current following a train of depolarizing pulses returns to the holding current with a similar time course. These observations, together with time constants for IH that are longer than the interburst interval, suggest that IH is always partially activated during normal bursting. A computer simulation demonstrates that opposing inward and outward currents with different kinetics, i.e. ID and IH, are sufficient to give rise to bursting activity, in the absence of non-linear voltage-dependent conductances. Such voltage-dependent conductances, which are present in the normal cell, contribute to but are not necessary for bursting activity.

Full text

PDF
51

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adams W. B., Levitan I. B. Voltage and ion dependences of the slow currents which mediate bursting in Aplysia neurone R15. J Physiol. 1985 Mar;360:69–93. doi: 10.1113/jphysiol.1985.sp015604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adams W. B., Parnas I., Levitan I. B. Mechanism of long-lasting synaptic inhibition in Aplysia neuron R15. J Neurophysiol. 1980 Dec;44(6):1148–1160. doi: 10.1152/jn.1980.44.6.1148. [DOI] [PubMed] [Google Scholar]
  3. Aldrich R. W., Jr, Getting P. A., Thompson S. H. Mechanism of frequency-dependent broadening of molluscan neurone soma spikes. J Physiol. 1979 Jun;291:531–544. doi: 10.1113/jphysiol.1979.sp012829. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alving B. O. Spontaneous activity in isolated somata of Aplysia pacemaker naurons. J Gen Physiol. 1968 Jan;51(1):29–45. doi: 10.1085/jgp.51.1.29. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Chen C. F., Von Baumgarten R., Takeda R. Pacemaker properties of completely isolated neurones in Aplysia californica. Nat New Biol. 1971 Sep 1;233(35):27–29. doi: 10.1038/newbio233027a0. [DOI] [PubMed] [Google Scholar]
  6. Drummond A. H., Benson J. A., Levitan I. B. Serotonin-induced hyperpolarization of an indentified Aplysia neuron is mediated by cyclic AMP. Proc Natl Acad Sci U S A. 1980 Aug;77(8):5013–5017. doi: 10.1073/pnas.77.8.5013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Gorman A. L., Hermann A. Internal effects of divalent cations on potassium permeability in molluscan neurones. J Physiol. 1979 Nov;296:393–410. doi: 10.1113/jphysiol.1979.sp013012. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gorman A. L., Hermann A., Thomas M. V. Intracellular calcium and the control of neuronal pacemaker activity. Fed Proc. 1981 Jun;40(8):2233–2239. [PubMed] [Google Scholar]
  9. Gorman A. L., Thomas M. V. Changes in the intracellular concentration of free calcium ions in a pace-maker neurone, measured with the metallochromic indicator dye arsenazo III. J Physiol. 1978 Feb;275:357–376. doi: 10.1113/jphysiol.1978.sp012194. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Lewis D. V. Spike aftercurrents in R15 of Aplysia: their relationship to slow inward current and calcium influx. J Neurophysiol. 1984 Feb;51(2):387–403. doi: 10.1152/jn.1984.51.2.387. [DOI] [PubMed] [Google Scholar]
  11. Meech R. W. Intracellular calcium injection causes increased potassium conductance in Aplysia nerve cells. Comp Biochem Physiol A Comp Physiol. 1972 Jun 1;42(2):493–499. doi: 10.1016/0300-9629(72)90128-4. [DOI] [PubMed] [Google Scholar]
  12. Parnas I., Strumwasser F. Mechanisms of long-lasting inhibition of a bursting pacemaker neuron. J Neurophysiol. 1974 Jul;37(4):609–620. doi: 10.1152/jn.1974.37.4.609. [DOI] [PubMed] [Google Scholar]
  13. Partridge L. D., Thompson S. H., Smith S. J., Connor J. A. Current-voltage relationships of repetitively firing neurons. Brain Res. 1979 Mar 23;164:69–79. doi: 10.1016/0006-8993(79)90007-6. [DOI] [PubMed] [Google Scholar]
  14. Smith S. J., Zucker R. S. Aequorin response facilitation and intracellular calcium accumulation in molluscan neurones. J Physiol. 1980 Mar;300:167–196. doi: 10.1113/jphysiol.1980.sp013157. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Smith T. G., Jr, Barker J. L., Gainer H. Requirements for bursting pacemaker potential activity in molluscan neurones. Nature. 1975 Feb 6;253(5491):450–452. doi: 10.1038/253450a0. [DOI] [PubMed] [Google Scholar]
  16. Stinnakre J., Tauc L. Calcium influx in active Aplysia neurones detected by injected aequorin. Nat New Biol. 1973 Mar 28;242(117):113–115. doi: 10.1038/newbio242113b0. [DOI] [PubMed] [Google Scholar]
  17. Thompson S. H., Smith S. J. Depolarizing afterpotentials and burst production in molluscan pacemaker neurons. J Neurophysiol. 1976 Jan;39(1):153–161. doi: 10.1152/jn.1976.39.1.153. [DOI] [PubMed] [Google Scholar]
  18. Treistman S. N. Axonal site for impulse initiation and rhythmogenesis in Aplysia pacemaker neurons. Brain Res. 1980 Apr 7;187(1):201–205. doi: 10.1016/0006-8993(80)90505-3. [DOI] [PubMed] [Google Scholar]
  19. Wilson W. A., Wachtel H. Negative resistance characteristic essential for the maintenance of slow oscillations in bursting neurons. Science. 1974 Dec 6;186(4167):932–934. doi: 10.1126/science.186.4167.932. [DOI] [PubMed] [Google Scholar]
  20. Wilson W. A., Wachtel H. Prolonged inhibition in burst firing neurons: synaptic inactivation of the slow regenerative inward current. Science. 1978 Nov 17;202(4369):772–775. doi: 10.1126/science.715442. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES