Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1985 Mar;360:347–365. doi: 10.1113/jphysiol.1985.sp015621

Effects of calcium and substrate on force-velocity relation and energy turnover in skinned smooth muscle of the guinea-pig.

A Arner, P Hellstrand
PMCID: PMC1193465  PMID: 3872937

Abstract

Mechanical properties and rate of ATP breakdown (JATP) have been determined in the chemically skinned guinea-pig taenia coli at 22 degrees C. The influence of varied [Ca2+], [Mg ATP] and muscle length were investigated. The shortening response after a step decrease in force (isotonic quick release) was highly curvilinear in the first 100-200 ms. This effect was shown to be a time-dependent response to the force step and not primarily caused by the shift along the length-force relation associated with shortening. Maximal shortening velocity (Vmax) decreased gradually following the release. At pCa (= -log [Ca2+]) 4.5, Vmax at 20 and 1000 ms after release was 0.49 +/- 0.07 and 0.041 +/- 0.004 (mean +/- S.E. of mean, n = 5) lengths s-1 respectively. Unloaded shortening velocity obtained from length steps of different magnitude (slack test) also showed a gradual decrease after the release, consistent with the isotonic release results. Increasing [Ca2+] from the relaxed state at pCa 9 (1 microM-calmodulin present) gave increased isometric force to a maximum at pCa 4.5. Half-maximal response was obtained at pCa 6.1. JATP at maximal force at pCa 4.5 was about 3 times the basal rate at pCa 9. The relation between JATP and force was highly non-linear, with a marked increase in JATP with little alteration in force at the highest [Ca2+]. When force was reduced to zero at pCa 4.5 by shortening the muscle to 0.3 L0 (L0 being the length giving maximal active force), JATP decreased by about 30%. At two levels of [Ca2+] giving similar force (pCa 5.75 and 4.5) the energetic tension cost obtained by length variations was lower at the low [Ca2+]. At pCa 6.0, Vmax and force were decreased to the same extent relative to their values at pCa 4.5. At pCa 5.75, where there was no reduction in force but a 25% decrease in isometric JATP, Vmax was unchanged relative to pCa 4.5. Force, Vmax and JATP were all dependent on [Mg ATP]. Half-maximal response was obtained at 0.1 mM for force and Vmax, and at 0.5 mM for JATP. The results are discussed in relation to a possible influence of both Ca2+ and Mg ATP on kinetic properties of the cross-bridge cycle.

Full text

PDF
347

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adelstein R. S., Klee C. B. Purification and characterization of smooth muscle myosin light chain kinase. J Biol Chem. 1981 Jul 25;256(14):7501–7509. [PubMed] [Google Scholar]
  2. Arner A. Force-velocity relation in chemically skinned rat portal vein. Effects of Ca2+ and Mg2+. Pflugers Arch. 1983 Apr;397(1):6–12. doi: 10.1007/BF00585160. [DOI] [PubMed] [Google Scholar]
  3. Arner A., Hellstrand P. Activation of contraction and ATPase activity in intact and chemically skinned smooth muscle of rat portal vein. Dependence on Ca++ and muscle length. Circ Res. 1983 Nov;53(5):695–702. doi: 10.1161/01.res.53.5.695. [DOI] [PubMed] [Google Scholar]
  4. Arner A. Mechanical characteristics of chemically skinned guinea-pig taenia coli. Pflugers Arch. 1982 Dec;395(4):277–284. doi: 10.1007/BF00580790. [DOI] [PubMed] [Google Scholar]
  5. Cooke R., Bialek W. Contraction of glycerinated muscle fibers as a function of the ATP concentration. Biophys J. 1979 Nov;28(2):241–258. doi: 10.1016/S0006-3495(79)85174-7. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Dillon P. F., Aksoy M. O., Driska S. P., Murphy R. A. Myosin phosphorylation and the cross-bridge cycle in arterial smooth muscle. Science. 1981 Jan 30;211(4481):495–497. doi: 10.1126/science.6893872. [DOI] [PubMed] [Google Scholar]
  7. Edman K. A. The velocity of unloaded shortening and its relation to sarcomere length and isometric force in vertebrate muscle fibres. J Physiol. 1979 Jun;291:143–159. doi: 10.1113/jphysiol.1979.sp012804. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fabiato A., Fabiato F. Calculator programs for computing the composition of the solutions containing multiple metals and ligands used for experiments in skinned muscle cells. J Physiol (Paris) 1979;75(5):463–505. [PubMed] [Google Scholar]
  9. Fabiato A. Myoplasmic free calcium concentration reached during the twitch of an intact isolated cardiac cell and during calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned cardiac cell from the adult rat or rabbit ventricle. J Gen Physiol. 1981 Nov;78(5):457–497. doi: 10.1085/jgp.78.5.457. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Ferenczi M. A., Goldman Y. E., Simmons R. M. The dependence of force and shortening velocity on substrate concentration in skinned muscle fibres from Rana temporaria. J Physiol. 1984 May;350:519–543. doi: 10.1113/jphysiol.1984.sp015216. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Gordon A. R. Contraction of detergent-treated smooth muscle. Proc Natl Acad Sci U S A. 1978 Jul;75(7):3527–3530. doi: 10.1073/pnas.75.7.3527. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Güth K., Junge J. Low Ca2+ impedes cross-bridge detachment in chemically skinned Taenia coli. Nature. 1982 Dec 23;300(5894):775–776. doi: 10.1038/300775a0. [DOI] [PubMed] [Google Scholar]
  13. Hellstrand P., Johansson B. Analysis of the length response to a force step in smooth muscle from rabbit urinary bladder. Acta Physiol Scand. 1979 Jun;106(2):221–238. doi: 10.1111/j.1748-1716.1979.tb06392.x. [DOI] [PubMed] [Google Scholar]
  14. Hellstrand P., Johansson B. The force-velocity relation in phasic contractions of venous smooth muscle. Acta Physiol Scand. 1975 Feb;93(2):157–166. doi: 10.1111/j.1748-1716.1975.tb05804.x. [DOI] [PubMed] [Google Scholar]
  15. Hellstrand P., Paul R. J. Phosphagen content, breakdown during contraction, and O2 consumption in rat portal vein. Am J Physiol. 1983 Mar;244(3):C250–C258. doi: 10.1152/ajpcell.1983.244.3.C250. [DOI] [PubMed] [Google Scholar]
  16. Huxley A. F. Muscular contraction. J Physiol. 1974 Nov;243(1):1–43. [PMC free article] [PubMed] [Google Scholar]
  17. Johansson B., Hellstrand P., Uvelius B. Responses of smooth muscle to quick load change studied at high time resolution. Blood Vessels. 1978;15(1-3):65–82. doi: 10.1159/000158154. [DOI] [PubMed] [Google Scholar]
  18. Klemt P., Peiper U., Speden R. N., Zilker F. The kinetics of post-vibration tension recovery of the isolated rat portal vein. J Physiol. 1981 Mar;312:281–296. doi: 10.1113/jphysiol.1981.sp013629. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Marston S. B. The regulation of smooth muscle contractile proteins. Prog Biophys Mol Biol. 1983;41(1):1–41. doi: 10.1016/0079-6107(83)90024-x. [DOI] [PubMed] [Google Scholar]
  20. Mulvany M. J. The undamped and damped series elastic components of a vascular smooth muscle. Biophys J. 1979 Jun;26(3):401–413. doi: 10.1016/S0006-3495(79)85261-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Paul R. J., Doerman G., Zeugner C., Rüegg J. C. The dependence of unloaded shortening velocity on Ca++, calmodulin, and duration of contraction in "chemically skinned" smooth muscle. Circ Res. 1983 Sep;53(3):342–351. doi: 10.1161/01.res.53.3.342. [DOI] [PubMed] [Google Scholar]
  22. Peterson J. W., 3rd Rate-limiting steps in the tension development of freeze-glycerinated vascular smooth muscle. J Gen Physiol. 1982 Mar;79(3):437–452. doi: 10.1085/jgp.79.3.437. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Peterson J. W. Vanadate ion inhibits actomyosin interaction in chemically skinned vascular smooth muscle. Biochem Biophys Res Commun. 1980 Aug 29;95(4):1846–1853. doi: 10.1016/s0006-291x(80)80114-8. [DOI] [PubMed] [Google Scholar]
  24. Siegman M. J., Butler T. M., Mooers S. U., Davies R. E. Chemical energetics of force development, force maintenance, and relaxation in mammalian smooth muscle. J Gen Physiol. 1980 Nov;76(5):609–629. doi: 10.1085/jgp.76.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Sparrow M. P., Mrwa U., Hofmann F., Rüegg J. C. Calmodulin is essential for smooth muscle contraction. FEBS Lett. 1981 Mar 23;125(2):141–145. doi: 10.1016/0014-5793(81)80704-1. [DOI] [PubMed] [Google Scholar]
  26. Takashi R., Putnam S. A fluorimetric method for continuously assaying ATPase: application to small specimens of glycerol-extracted muscle fibers. Anal Biochem. 1979 Jan 15;92(2):375–382. doi: 10.1016/0003-2697(79)90674-2. [DOI] [PubMed] [Google Scholar]
  27. Uvelius B., Hellstrand P. Effects of phasic and tonic activation on contraction dynamics in smooth muscle. Acta Physiol Scand. 1980 Aug;109(4):399–406. doi: 10.1111/j.1748-1716.1980.tb06612.x. [DOI] [PubMed] [Google Scholar]
  28. Warshaw D. M., Fay F. S. Cross-bridge elasticity in single smooth muscle cells. J Gen Physiol. 1983 Aug;82(2):157–199. doi: 10.1085/jgp.82.2.157. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES