Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Oct;355:1–9. doi: 10.1113/jphysiol.1984.sp015401

Rate of change of alveolar carbon dioxide and the control of ventilation during exercise.

C J Allen, N L Jones
PMCID: PMC1193473  PMID: 6436474

Abstract

The relationship between rate of change of alveolar PCO2 (delta PA, CO2/delta te), CO2 output (VCO2) and ventilation (VE) has been determined following a rapid increase in exercise intensity, to test the hypothesis that VE is related to VCO2 by a feed-forward control system responding to delta PA, CO2/delta te. There was a close relationship between delta PA, CO2/delta te and VCO2 (delta PA, CO2/delta te = 3.2 VCO2 + 0.85), but delta PA, CO2/delta te increased more rapidly than VCO2. Increases in mean inspiratory flow, an index of inspiratory drive, were more closely related to changes in delta PA, CO2/delta te than to changes in VCO2. Increases in VE during transient and steady-state conditions may be described by the equation: VE = 6.76 delta PA, CO2/delta te -3.50, a relationship which is consistent with a feed-forward control system.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Arieli R., Van Liew H. D. Corrections for the response time and delay of mass spectrometers. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1417–1422. doi: 10.1152/jappl.1981.51.6.1417. [DOI] [PubMed] [Google Scholar]
  2. Band D. M., Cameron I. R., Semple S. J. Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J Appl Physiol. 1969 Mar;26(3):268–273. doi: 10.1152/jappl.1969.26.3.268. [DOI] [PubMed] [Google Scholar]
  3. Band D. M., Cameron I. R., Semple S. J. The effect on respiration of abrupt changes in carotid artery pH and PCO2 in the cat. J Physiol. 1970 Dec;211(2):479–494. doi: 10.1113/jphysiol.1970.sp009288. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Band D. M., Wolff C. B., Ward J., Cochrane G. M., Prior J. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Nature. 1980 Jan 3;283(5742):84–85. doi: 10.1038/283084a0. [DOI] [PubMed] [Google Scholar]
  5. Beaver W. L., Lamarra N., Wasserman K. Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662–1675. doi: 10.1152/jappl.1981.51.6.1662. [DOI] [PubMed] [Google Scholar]
  6. Beaver W. L., Wasserman K., Whipp B. J. On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol. 1973 Jan;34(1):128–132. doi: 10.1152/jappl.1973.34.1.128. [DOI] [PubMed] [Google Scholar]
  7. Casaburi R., Whipp B. J., Wasserman K., Beaver W. L., Koyal S. N. Ventilatory and gas exchange dynamics in response to sinusoidal work. J Appl Physiol Respir Environ Exerc Physiol. 1977 Feb;42(2):300–301. doi: 10.1152/jappl.1977.42.2.300. [DOI] [PubMed] [Google Scholar]
  8. Cochrane G. M., Newstead C. G., Nowell R. V., Openshaw P., Wolff C. B. The rate of rise of alveolar carbon dioxide pressure during expiration in man. J Physiol. 1982 Dec;333:17–27. doi: 10.1113/jphysiol.1982.sp014435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DUBOIS A. B., FOWLER R. C., SOFFER A., FENN W. O. Alveolar CO2 measured by expiration into the rapid infrared gas analyzer. J Appl Physiol. 1952 Jan;4(7):526–534. doi: 10.1152/jappl.1952.4.7.526. [DOI] [PubMed] [Google Scholar]
  10. Davies E. E., Hahn H. L., Spiro S. G., Edwards R. H. A new technique for recording respiratory transients at the start of exercise. Respir Physiol. 1974 Feb;20(1):69–79. doi: 10.1016/0034-5687(74)90019-x. [DOI] [PubMed] [Google Scholar]
  11. Krogh A., Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913 Oct 17;47(1-2):112–136. doi: 10.1113/jphysiol.1913.sp001616. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl. 1974;415:1–68. [PubMed] [Google Scholar]
  13. Miyamoto Y., Hiura T., Tamura T., Nakamura T., Higuchi J., Mikami T. Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1198–1208. doi: 10.1152/jappl.1982.52.5.1198. [DOI] [PubMed] [Google Scholar]
  14. Noguchi H., Ogushi Y., Yoshiya I., Itakura N., Yamabayashi H. Breath-by-breath VCO2 and VO2 required compensation for transport delay and dynamic response. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):79–84. doi: 10.1152/jappl.1982.52.1.79. [DOI] [PubMed] [Google Scholar]
  15. Pearce D. H., Milhorn H. T., Jr, Holloman G. H., Reynolds W. J. Computer-based system for analysis of respiratory responses to exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):968–975. doi: 10.1152/jappl.1977.42.6.968. [DOI] [PubMed] [Google Scholar]
  16. Phillipson E. A., Bowes G., Townsend E. R., Duffin J., Cooper J. D. Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1398–1403. doi: 10.1152/jappl.1981.51.6.1398. [DOI] [PubMed] [Google Scholar]
  17. Phillipson E. A., Bowes G., Townsend E. R., Duffin J., Cooper J. D. Role of metabolic CO2 production in ventilatory response to steady-state exercise. J Clin Invest. 1981 Sep;68(3):768–774. doi: 10.1172/JCI110313. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Saunders K. B. Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J Theor Biol. 1980 May 7;84(1):163–179. doi: 10.1016/s0022-5193(80)81042-3. [DOI] [PubMed] [Google Scholar]
  19. Siafakas N., Morris A. J., Prime F. J. The rate of change of mouth occlusion pressure during exercise. Clin Sci (Lond) 1979 May;56(5):455–461. doi: 10.1042/cs0560455. [DOI] [PubMed] [Google Scholar]
  20. Swanson G. D. The exercise hyperpnea dilemma. Chest. 1978 Feb;73(2 Suppl):277–279. doi: 10.1378/chest.73.2.277. [DOI] [PubMed] [Google Scholar]
  21. Wessel H. U., Stout R. L., Bastanier C. K., Paul M. H. Breath-by-breath variation of FRC: effect on VO2 and VCO2 measured at the mouth. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jun;46(6):1122–1126. doi: 10.1152/jappl.1979.46.6.1122. [DOI] [PubMed] [Google Scholar]
  22. YAMAMOTO W. S., EDWARDS M. W., Jr Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J Appl Physiol. 1960 Sep;15:807–818. doi: 10.1152/jappl.1960.15.5.807. [DOI] [PubMed] [Google Scholar]
  23. YAMAMOTO W. S. Mathematical analysis of the time course of alveolar carbon dioxide. J Appl Physiol. 1960 Mar;15:215–219. doi: 10.1152/jappl.1960.15.2.215. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES