Abstract
The relationship between rate of change of alveolar PCO2 (delta PA, CO2/delta te), CO2 output (VCO2) and ventilation (VE) has been determined following a rapid increase in exercise intensity, to test the hypothesis that VE is related to VCO2 by a feed-forward control system responding to delta PA, CO2/delta te. There was a close relationship between delta PA, CO2/delta te and VCO2 (delta PA, CO2/delta te = 3.2 VCO2 + 0.85), but delta PA, CO2/delta te increased more rapidly than VCO2. Increases in mean inspiratory flow, an index of inspiratory drive, were more closely related to changes in delta PA, CO2/delta te than to changes in VCO2. Increases in VE during transient and steady-state conditions may be described by the equation: VE = 6.76 delta PA, CO2/delta te -3.50, a relationship which is consistent with a feed-forward control system.
Full text
PDF








Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Arieli R., Van Liew H. D. Corrections for the response time and delay of mass spectrometers. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1417–1422. doi: 10.1152/jappl.1981.51.6.1417. [DOI] [PubMed] [Google Scholar]
- Band D. M., Cameron I. R., Semple S. J. Effect of different methods of CO2 administration on oscillations of arterial pH in the cat. J Appl Physiol. 1969 Mar;26(3):268–273. doi: 10.1152/jappl.1969.26.3.268. [DOI] [PubMed] [Google Scholar]
- Band D. M., Cameron I. R., Semple S. J. The effect on respiration of abrupt changes in carotid artery pH and PCO2 in the cat. J Physiol. 1970 Dec;211(2):479–494. doi: 10.1113/jphysiol.1970.sp009288. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Band D. M., Wolff C. B., Ward J., Cochrane G. M., Prior J. Respiratory oscillations in arterial carbon dioxide tension as a control signal in exercise. Nature. 1980 Jan 3;283(5742):84–85. doi: 10.1038/283084a0. [DOI] [PubMed] [Google Scholar]
- Beaver W. L., Lamarra N., Wasserman K. Breath-by-breath measurement of true alveolar gas exchange. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1662–1675. doi: 10.1152/jappl.1981.51.6.1662. [DOI] [PubMed] [Google Scholar]
- Beaver W. L., Wasserman K., Whipp B. J. On-line computer analysis and breath-by-breath graphical display of exercise function tests. J Appl Physiol. 1973 Jan;34(1):128–132. doi: 10.1152/jappl.1973.34.1.128. [DOI] [PubMed] [Google Scholar]
- Casaburi R., Whipp B. J., Wasserman K., Beaver W. L., Koyal S. N. Ventilatory and gas exchange dynamics in response to sinusoidal work. J Appl Physiol Respir Environ Exerc Physiol. 1977 Feb;42(2):300–301. doi: 10.1152/jappl.1977.42.2.300. [DOI] [PubMed] [Google Scholar]
- Cochrane G. M., Newstead C. G., Nowell R. V., Openshaw P., Wolff C. B. The rate of rise of alveolar carbon dioxide pressure during expiration in man. J Physiol. 1982 Dec;333:17–27. doi: 10.1113/jphysiol.1982.sp014435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DUBOIS A. B., FOWLER R. C., SOFFER A., FENN W. O. Alveolar CO2 measured by expiration into the rapid infrared gas analyzer. J Appl Physiol. 1952 Jan;4(7):526–534. doi: 10.1152/jappl.1952.4.7.526. [DOI] [PubMed] [Google Scholar]
- Davies E. E., Hahn H. L., Spiro S. G., Edwards R. H. A new technique for recording respiratory transients at the start of exercise. Respir Physiol. 1974 Feb;20(1):69–79. doi: 10.1016/0034-5687(74)90019-x. [DOI] [PubMed] [Google Scholar]
- Krogh A., Lindhard J. The regulation of respiration and circulation during the initial stages of muscular work. J Physiol. 1913 Oct 17;47(1-2):112–136. doi: 10.1113/jphysiol.1913.sp001616. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Linnarsson D. Dynamics of pulmonary gas exchange and heart rate changes at start and end of exercise. Acta Physiol Scand Suppl. 1974;415:1–68. [PubMed] [Google Scholar]
- Miyamoto Y., Hiura T., Tamura T., Nakamura T., Higuchi J., Mikami T. Dynamics of cardiac, respiratory, and metabolic function in men in response to step work load. J Appl Physiol Respir Environ Exerc Physiol. 1982 May;52(5):1198–1208. doi: 10.1152/jappl.1982.52.5.1198. [DOI] [PubMed] [Google Scholar]
- Noguchi H., Ogushi Y., Yoshiya I., Itakura N., Yamabayashi H. Breath-by-breath VCO2 and VO2 required compensation for transport delay and dynamic response. J Appl Physiol Respir Environ Exerc Physiol. 1982 Jan;52(1):79–84. doi: 10.1152/jappl.1982.52.1.79. [DOI] [PubMed] [Google Scholar]
- Pearce D. H., Milhorn H. T., Jr, Holloman G. H., Reynolds W. J. Computer-based system for analysis of respiratory responses to exercise. J Appl Physiol Respir Environ Exerc Physiol. 1977 Jun;42(6):968–975. doi: 10.1152/jappl.1977.42.6.968. [DOI] [PubMed] [Google Scholar]
- Phillipson E. A., Bowes G., Townsend E. R., Duffin J., Cooper J. D. Carotid chemoreceptors in ventilatory responses to changes in venous CO2 load. J Appl Physiol Respir Environ Exerc Physiol. 1981 Dec;51(6):1398–1403. doi: 10.1152/jappl.1981.51.6.1398. [DOI] [PubMed] [Google Scholar]
- Phillipson E. A., Bowes G., Townsend E. R., Duffin J., Cooper J. D. Role of metabolic CO2 production in ventilatory response to steady-state exercise. J Clin Invest. 1981 Sep;68(3):768–774. doi: 10.1172/JCI110313. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Saunders K. B. Oscillations of arterial CO2 tension in a respiratory model: some implications for the control of breathing in exercise. J Theor Biol. 1980 May 7;84(1):163–179. doi: 10.1016/s0022-5193(80)81042-3. [DOI] [PubMed] [Google Scholar]
- Siafakas N., Morris A. J., Prime F. J. The rate of change of mouth occlusion pressure during exercise. Clin Sci (Lond) 1979 May;56(5):455–461. doi: 10.1042/cs0560455. [DOI] [PubMed] [Google Scholar]
- Swanson G. D. The exercise hyperpnea dilemma. Chest. 1978 Feb;73(2 Suppl):277–279. doi: 10.1378/chest.73.2.277. [DOI] [PubMed] [Google Scholar]
- Wessel H. U., Stout R. L., Bastanier C. K., Paul M. H. Breath-by-breath variation of FRC: effect on VO2 and VCO2 measured at the mouth. J Appl Physiol Respir Environ Exerc Physiol. 1979 Jun;46(6):1122–1126. doi: 10.1152/jappl.1979.46.6.1122. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO W. S., EDWARDS M. W., Jr Homeostasis of carbon dioxide during intravenous infusion of carbon dioxide. J Appl Physiol. 1960 Sep;15:807–818. doi: 10.1152/jappl.1960.15.5.807. [DOI] [PubMed] [Google Scholar]
- YAMAMOTO W. S. Mathematical analysis of the time course of alveolar carbon dioxide. J Appl Physiol. 1960 Mar;15:215–219. doi: 10.1152/jappl.1960.15.2.215. [DOI] [PubMed] [Google Scholar]
