Abstract
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts (ranging from single semiconductor to multicomponent semiconductor junctions) that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes. Indeed, charge kinetics become more complex as both charge generation and charge consumption may occur simultaneously on different components, generally with charges being transferred from one component to another. Capturing detailed charge dynamics information in each heterojunction would provide numerous significant benefits for applications and has been needed for a long time. Here, the steering of charge kinetics by modulating charge energy states in the design of semiconductor–metal‐interface‐based heterogeneous photocatalysts is focused. These phenomena can be delineated by separating heterojunctions into classes exhibiting either Schottky/ohmic or plasmonic effects. General principles for the design and construction of heterojunction photocatalysts, including recent advances in the interfacing of semiconductors with graphene, carbon quantum dots, and graphitic carbon nitride are presented. Their limitations and possible future outlook are brought forward to further instruct the field in designing highly efficient photocatalysts.
Keywords: graphene, heterojunctions, photocatalysis, Schottky/ohmic junctions, semiconductors
Steering charge kinetics is a key to optimizing quantum efficiency. Advancing the design of photocatalysts that promise improved photocatalytic performance for converting solar to chemical energy, entails mastery of increasingly more complicated processes.

1. Introduction
Developing clean, low‐cost, and renewable fuel sources is a key challenge for meeting the energy demands of a fast‐growing population and increased industrialization, which at the same time presents a promising route for mitigating environmental issues caused by the combustion of fossil fuels.[ 1, 2, 3 ] However, obtaining sufficient efficiency in large‐scale applications for converting solar energy into fuels and/or electricity is still a challenge. Holding so much promise for contributing to a sustainable energy future, photocatalytic splitting of water for the production of hydrogen and oxygen has received a great deal of attention from all over the world[ 4 ] since the first demonstration by Fujishima and Honda using TiO2 and ultraviolet radiation (UV).[ 5 ] As a result, several worthwhile single semiconductor photocatalysts utilizing Cu2O,[ 6, 7 ] ZnO,[ 8 ] WO3,[ 9, 10, 11 ] etc. have been studied exhaustively aiming to optimize and achieve efficient semiconductor photocatalysis.
A semiconductor material is characterized by the highest occupied energy band (the valence band, VB), the lowest empty band (the conduction band, CB), and an energy bandgap (E g) separating the two, i.e., the energy region where no electronic states exist due to quantization of energy. Semiconductor‐based photocatalysis generally depends upon the generation of photoexcited charge carriers. Specifically, electrons at the VB maximum of the semiconductor are driven to the CB minimum by incident light, leaving oxidative holes at the VB maximum. In general, the process of semiconductor‐based photocatalysis consists of four main steps: 1) absorption of photons with energies equal to or greater than the bandgap; 2) charge separation of photoexcited electron–hole pairs in the bulk catalyst; 3) migration of charge carriers from the bulk to active sites on the surface of the catalyst; and 4) occurrence of chemical redox reactions (such as the splitting of water into hydrogen and oxygen) driven by energetic electrons or holes at active sites.[ 2, 4, 12, 13 ]
However, in the case of single semiconductors, there exist severe performance bottlenecks preventing their use in practical photocatalytic applications. For example, there are mutual tradeoffs between the energy region of the solar spectrum to which the semiconductor responds and the energetics of the reduction/oxidation (redox) reactions it is capable of catalyzing. Photons cannot generate e–h pairs unless their energies exceed or equal the bandgap (E g) of the semiconductor. It is also necessary to adjust band structures to enable a response to a wider region of the solar spectrum to achieve higher efficiency. The viability of the overall photocatalytic reaction requires the position of the CB (VB) edge to be higher (lower) than the potential of the reduction (oxidation) half‐reaction, respectively. For instance, in the splitting of water, the bottom of the CB should be at a more negative potential than the H+ to H2 reduction potential (0 V vs NHE at pH = 0), whereas the top of the VB must be located at a value more positive than the H2O to O2 oxidation potential (1.23 V vs NHE at pH = 0), making many otherwise promising semiconductors unsuitable for water‐splitting applications.[ 14, 15 ]
In single semiconductors, the relationship between the energy of absorbed photons and the redox potential of charge carriers is irreconcilable and incompatible. For example, for TiO2, only the UV region (≈5% of the solar spectrum) can be utilized. Moreover, the migration of photogenerated electrons and holes in single semiconductors often results in a high probability of unwanted charge recombination and low efficiency of charge migration to redox sites, along with an increased probability of encountering defects (trapping centers). In contrast to bulk single semiconductor photocatalysts, low‐dimensional crystals have charge carriers that can travel thousands of interatomic distances without scattering. The reduced dimensionality of these crystals maximizes not only their surface area but also the surface per quantity of electrons available for enhanced photocatalytic activity.[ 16, 17 ] In general, low‐dimensional materials have shown appreciable differences in minimizing the recombination rate of electron–hole pairs as well as other electronic, catalytic, optical, and mechanical properties compared to their bulk counterparts.[ 18, 19, 20, 21, 22, 23, 24 ]
Overall, the key issues for enhancing photocatalytic performance are the improvement of the light absorption characteristics of catalytic systems, the enhancement of the separation of effective charge carriers, and the enlargement of catalytic surface area— all of which are limited by the intrinsic nature of single semiconductors. Additional critical factors required by practical applications include high chemical stability, high precision and flexibility of combinations of crystal structures and defects, optimum photocatalyst band positions, and low‐cost. To overcome the shortcomings of single semiconductors, creation of heterojunction structures has been proposed, such as by interfacing more than one semiconductor (photocatalyst), semiconductor–metal, semiconductor–semiconductor–metal, or semiconductor–metal–semiconductor layers in combination.
2. Charge Steering in Heterojunction Photocatalysis
The fundamental principle of building a semiconductor‐based photocatalytic heterostructure is to make full use of the advantages of each component by rationally arranging component geometry to maximize overall photocatalytic performance. Heterojunctions of p–n semiconductor (p–n), semiconductor–metal (s–m), semiconductor–semiconductor–metal, and Z‐scheme semiconductor (Z‐scheme) hybrid systems are the basic structures of well‐documented designs for effective photocatalytic systems. The improved photocatalytic efficiency of these is mainly attributed to increased rates of charge separation and migration and utilization of a greater portion of the broad solar spectrum. Establishing relationships between the parameters characterizing these heterojunctions within each reaction step is important for gaining charge kinetics information of a given photocatalytic system.
To improve the design of heterojunction photocatalysts, tuning charge kinetics dynamics to improve charge separation and minimize loss of energy during charge carrier migration is critical for quantum yield optimization. Designs of multicomponent semiconductor junctions have long sought to steer charge flows and attain more efficient charge separation. Inherently, the charge kinetics becomes more complicated in these systems because both charge generation, as well as charge consumption, may simultaneously take place on different components and because charge is generally transferred from one component to another. However, capturing detailed charge dynamics information at each heterojunction benefits numerous important applications.
This review focuses on the steering of charge kinetics in different semiconductor heterojunction systems to improve charge separation as determined by the nature of the generated internal electric field and characteristics of band bending at the junction. Further, it covers recent work on heterojunctions including: 1) Schottky/ohmic junctions and plasmonic effects models; 2) materials incorporating semiconductor–graphene, semiconductor(S)–graphitic carbon nitride (C3N4), semiconductor–(RGO/metal)–graphitic carbon nitride (g–C3N4); 3) recent fascinating investigations of CQDs incorporated into graphitic carbon nitride heterojunctions, and the advances achieved by each for enhancing the overall photocatalytic process.
3. p‐Type–n‐Type (p–n) Junction photocatalysis
In the design of multicomponent semiconductor junctions, the steering of charge flow has long been recognized as the key for creating efficient charge separation. Yongsheng et al. first showed that the p–n heterojunction enhances photocatalytic activity more efficiently than conventional heterojunctions (i.e., heterojunctions composed of different materials or the same materials (see Figure 1 ) n‐type–n‐type or p‐type–p‐type heterojunctions);[ 25 ] subsequently, this finding has been confirmed by many others.[ 2, 15, 26, 27, 28 ]
Figure 1.

a,b) Schematic representations of a p–n heterojunction between two semiconductors without an externally applied voltage (a), and electron–hole separation in a p–n heterojunction photocatalyst under the influence of the internal electric field upon light illumination (b).
The basic principle of a p–n system consists of two different components—a p‐type and an n‐type semiconductor—that are in direct contact, as depicted in Figure 1a. Each electron from the n‐type semiconductor that diffuses into the p‐type semiconductor leaves a positive charge behind; similarly, a hole migrating from the p‐type to the n‐type semiconductor leaves a negative charge. Electron–hole diffusion continues until the system achieves Fermi‐level equilibrium. As a result, a charged region forms close to the p–n interface, the so‐called internal electric field. With the formation of the internal electric field, after light excitation, photoexcited electrons transfer from high CB to low CB and holes from low VB to high VB, and these e–h pairs remain well separated, as shown in Figure 1b.
Conventionally, semiconductor 1–semiconductor 2 hybrid junctions are classified as Type I, Type II, or Type III, as shown in Figure 2 . When a Type‐I p–n heterojunction is irradiated with light with energy greater than or equal to the bandgap, the photogenerated electrons migrate from the higher CB to the lower CB and the holes from lower VB to higher VB, as depicted in Figure 2a. Similarly, migration of photoexcited electrons and holes in Type‐II and Type‐III p–n junctions occurs from high CB to low CB and low VB to high VB, and effective charge separation can be obtained in either, as shown in Figure 2b,c. In the latter two types, separation results from the migration of high‐energy electrons and the opposite movement of high energy holes, whereas in the straddling bandgap (Type I), both high‐energy electrons and holes move to the same semiconductor, which disfavors improvement of photocatalytic activity.
Figure 2.

a–c) Schematic of the three different types of p–n junction photocatalysts: (a) Type I, (b) Type II, and (c) Type III upon light exposure.
Notably, Type‐II p–n heterojunction photocatalysts offer favorable band alignments for efficient charge carrier separation. Moreover, rapid charge transfer assisted by the internal electric field formed at the interface junction is beneficial for producing rates of charge separation that lead to enhanced photocatalytic reactions. One of the most investigated Type‐II p–n multicomponent junctions is the Cu2O/TiO2 heterojunction photocatalyst in which p‐type Cu2O and n‐type TiO2 contact directly.[ 29 ] Recently, C. Ding et al. synthesized a highly efficient Cu2O–TiO2 heterojunction by a wet chemical method. The Cu2O–TiO2 heterojunction prepared in this way achieves an improved methylene blue degradation rate of 93.67% in 45 min, more efficient than pristine Cu2O. At the p–n junction, free electrons diffuse from TiO2 to Cu2O and holes from Cu2O to TiO2 until equilibrium is reached. Consequently, they leave negative and positive regions at the Cu2O/TiO2 interface, which forms a space charge region that results in an internal electric field. Upon irradiation of light, photoexcited electrons transfer from the CB of Cu2O (E g = 2−2.2 eV)[ 30, 31, 32 ] to the CB of TiO2 (E g = 3.2 eV) and photoexcited holes migrate from the VB of TiO2 to the VB of Cu2O, a condition that favors reduction at TiO2 and oxidation at Cu2O. The formation of the internal electric field minimizes the recombination probability of photoexcited electron–hole pairs and results in improved photocatalytic activity, as illustrated in Figure 1b.
The study of p–n heterojunctions has been extended to 2D p–n junction nanosheets. The combined experimental and theoretical work of Nan et al. on MoS2/TiO2 (a Type‐II p–n junction), demonstrates that enhanced visible light absorption can result in enhanced photocatalytic activity.[ 33 ] Their photocurrent density analysis shows that the MoS2/TiO2 heterojunction has 17.8 times higher activity than that of pristine TiO2. The photocatalytic degradation enhancement factor of the corresponding kinetic constant is about 5.2. Such a dramatic improvement originates: 1) from the incorporation of MoS2 nanosheets that improve light‐harvesting performance; and 2) from the favorable band alignment that results in fast and efficient charge separation of photogenerated charge carriers. Additional comprehensive studies of many outstanding p–n junction designs are outlined in Table 1 .
Table 1.
Summary of representative p–n heterojunctions reported so far
| Sample/model | Heterojunction class | Oxidation site | Reduction site | Charge migration direction across the interface | Activity test/Application | References |
|---|---|---|---|---|---|---|
| NiO–ZnO | Type II | NiO | ZnO | NiO ZnO, ZnO NiO |
Degradation of rhodamine B (RhB) | [88, 89, 90, 91, 92, 93] |
| NiO–TiO2 | Type II | NiO | TiO2 | NiO TiO2, TiO2
NiO |
Photocatalytic reduction of Cr2O7 2− and photocatalytic oxidation of RhB,hydrogen generation | [94, 95, 96] |
| NiO–SnO2 | Type II | NiO | SnO2 | NiO SnO2, SnO2
NiO |
Degradation of RhB | [97] |
| Cu2O–TiO2 | Type II | Cu2O | TiO2 | Cu2O TiO2, TiO2
Cu2O |
Decomposition of p‐Nitrophenol, Orange II oxidation, MB degradation, 2,4,6‐trichloro‐phenol degradation, enhanced photocurrents,hydrogen generation | [29, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108] |
| CuO–In2O3 | Type II | CuO | In2O3 | CuO In2O3, In2O3
CuO |
Degradation of RhB | [109] |
| ZnS–Cu2S | Type I | – | Cu2S | ZnS Cu2S |
Photocatalytic water splitting | [110] |
| Cu2O–CdS | Type II | Cu2O | CdS | Cu2O CdS, CdS Cu2O |
Hydrogen Evolution | [111, 112] |
| CuO–ZnO | Type II | CuO | ZnO | CuO ZnO, ZnO CuO |
Photodegradation of Phenol, azo dye, (MB), degradation of Congo red, and benzoic acid, photocurrent production | [93, 113, 114, 115, 116, 117, 118] |
| CuO–SnO2 | Type II | CuO | SnO2 | CuO SnO2, SnO2
CuO |
Decomposition of MB | [119] |
| Cu2O–ZnO | Type II | Cu2O | ZnO | Cu2O ZnO, ZnO Cu2O |
Methyl orange (MO) photodegradation, reduction of methylviologen (MV2+) | [120, 121, 122, 123, 124] |
| CuS–ZnO | Type II | CuS | ZnO | CuS ZnO, ZnO CuS |
Decomposition of MB | [125] |
| CuS–TiO2 | Type II | CuS | TiO2 | CuS TiO2, TiO2
CuS |
H2 production | [126] |
| CuS–CdS | Type II | CdS | CuS | CdS CuS, CuS CdS |
Degradation of MB and H2 production | [127, 128] |
| CuS–CdS | Type II | CuS | CdS | CuS CdS, CdS CuS |
H2 production | [129] |
| Cu2S–CdS | Type II | Cu2S | CdS | Cu2S CdS, CdS Cu2S |
H2 production | [130] |
| Cu2S–ZnO | Type II | Cu2S | ZnO | Cu2S ZnO, ZnO Cu2S |
Hydrogen generation | [131] |
| Cu3P–CdS | Type II | Cu3P | CdS | Cu3P CdS, CdS Cu3P |
H2 production | [132] |
| Cu3P–TiO2 | Type II | Cu3P | TiO2 | Cu3P TiO2, TiO2
Cu3P |
H2 production | [133] |
| Ag2O–TiO2 | Type II | Ag2O | TiO2 | Ag2O TiO2, TiO2
Ag2O |
Degradation of MO | [134] |
| Ag2O–ZnO | Type II | Ag2O | ZnO | Ag2O ZnO, ZnO Ag2O |
MB degradation | [135] |
| SnO–SnO2 | Type II | SnO | SnO2 | SnO SnO2, SnO2
SnO |
MB degradation | [136] |
| PbS –SnO2 | Type II | PbS | SnO2 | PbS SnO2, SnO2
PbS |
Degradation of RhB | [137] |
| SnO–ZnO | Type II | SnO | ZnO | SnO ZnO, ZnO SnO |
MB degradation | [138] |
| SnS–ZnO | Type II | SnS | ZnO | SnS ZnO, ZnO SnS |
Degradation of MO, RhB | [139] |
| Ag2O–Bi2O2CO3 | Type II | Ag2O | Bi2O2CO3 | Ag2O Bi2O2CO3, Bi2O2CO3
Ag2O |
Degradation of RhB, MB, and MO | [140] |
| Ag2O–Bi2WO6 | Type II | Ag2O | Bi2WO6 | Ag2O Bi2WO6, Bi2WO6
Ag2O |
Degradation RhB | [141] |
| Co3O4/BiVO4 | Type I | Co3O4 | Co3O4 | BiVO4
Co3O4, BiVO4
Co3O4
|
Degradation of Phenol,RhB | [142, 143] |
| m‐BiVO4‐γ‐Bi2O3 | Type II | γ‐Bi2O3 | m‐BiVO4 | γ‐Bi2O3
m‐BiVO4,
m‐BiVO4
γ‐Bi2O3
|
Degradation RhB | [144, 145] |
| Co3O4/Fe2O3 | Type II | Co3O4 | Fe2O3 | Co3O4
Fe2O3, Fe2O3
Co3O4
|
Water Splitting | [146] |
| Co3O4/WO3 | Type II | Co3O4 | WO3 | Co3O4
WO3, WO3
Co3O4
|
2‐propanol decomposition | [147] |
| CoP3/Ni2P | Type II | CoP3 | Ni2P | CoP3
Ni2P, Ni2P CoP3
|
H2 production | [148] |
| Bi2O3–TiO2 | Type II | Bi2O3 | TiO2 | Bi2O3
TiO2, TiO2
Bi2O3
|
Degradation of p‐chlorophenol, MB, pentachlorophenol | [99, 149] |
| Bi2O3–SnO2 | Type II | Bi2O3‐ | SnO2 | Bi2O3
SnO2, SnO2
Bi2O3
|
Degradation of RhB | [150] |
| Bi2O3–ZnO | Type II | Bi2O3 | ZnO | Bi2O3
ZnO, ZnO Bi2O3
|
Degradation of alizarin red (AR) dye | [151] |
| V2O5–TiO2 | Type I/II | V2O5 | TiO2 | V2O5
TiO2, TiO2
V2O5
|
RhB degradation, H2 production | [152, 153, 154] |
| CuO–TiO2 | Type II | CuO | TiO2 | CuO TiO2, TiO2
CuO |
H2 production, Orange II oxidation | [155, 156, 157] |
| CeO2–TiO2 | Type II | CeO2 | TiO2 | CeO2
TiO2, TiO2
CeO2
|
Oxidative degradation of CV dye (Crystal Violet) | [158] |
| CeO2–Ag3PO4 | Type II | CeO2 | Ag3PO4 | CeO2
Ag3PO4, Ag3PO4
CeO2
|
Degradation of MB, RhB, and ciprofloxacin (CIP) | [159] |
| NiO–SrTiO3 | Type II | NiO | SrTiO3 | NiO SrTiO3, SrTiO3
NiO |
Enhanced photocurrents | [160] |
| CuO–BaTiO3 | Type I | CuO | CuO | BaTiO3
CuO, BaTiO3
CuO |
MO degradation | [161] |
| Cu2O–SrTiO3 | Type II | Cu2O | SrTiO3 | Cu2O SrTiO3, SrTiO3
Cu2O |
Photodegradation of tetracycline (TC) | [162] |
| CuO–PbTiO3 | Type II | CuO | PbTiO3 | CuO PbTiO3, PbTiO3
CuO |
Degradation of malachite green | [163] |
| α‐Fe2O3/Cu2O | Type II | α‐Fe2O3 | Cu2O | α‐Fe2O3
Cu2O, Cu2O α‐Fe2O3
|
Photoreduction of CO2 | [38] |
| α‐Fe2O3/ZnO | Type II | α‐Fe2O3 | ZnO | α‐Fe2O3
ZnO, ZnO α‐Fe2O3
|
H2 production | [164] |
| α‐Fe2O3/CuPc | Type II | α‐Fe2O3 | CuPc | α‐Fe2O3
CuPc, CuPc α‐Fe2O3
|
Photoreduction of CO2 | [165] |
| Cu2O–Fe2O3 | Type II | Cu2O | Fe2O3 | Cu2O Fe2O3, Fe2O3
Cu2O |
Degradation of MB and RhB | [166] |
| MoS2–CeO2 | Type II | MoS2 | CeO2 | MoS2
CeO2, CeO2
MoS2
|
H2 production | [167] |
| MoS2–CdS | Type I | MoS2 | MoS2 | CdS MoS2, CdS MoS2
|
H2 production | [168, 169, 170] |
| MoS2–TiO2 | Type II | MoS2 | TiO2 | MoS2
TiO2, TiO2
MoS2
|
Photodegradation of 4‐CP, RhB, hydrogen evolution | [33, 127, 171] |
| MoS2–TiO2 | Type II | TiO2 | MoS2 | TiO2
MoS2, MoS2
TiO2
|
Hydrogen evolution | [172] |
| MoS2–ZrO2 | Type I | MoS2 | MoS2 | ZrO2
MoS2, ZrO2
MoS2
|
Degradation of MO | [173] |
| MoS2–SnO2 | Type II | MoS2 | SnO2 | MoS2
SnO2, SnO2
MoS2
|
Methylene blue (MB) degradation | [174] |
| MoS2–WO3 | Type II | MoS2 | WO3 | MoS2
WO3, WO3
MoS2
|
Degradation of Congo red (CR) | [175] |
| MoS2–ZnS | Type I | MoS2 | MoS2 | ZnS MoS2, ZnS MoS2
|
Malachite green dye degradation | [176] |
| α‐MoO3–MoS2 | Type II | MoS2 | α‐MoO3 | MoS2
α‐MoO3, α‐MoO3
MoS2
|
RhB degradation | [177] |
| MoS2–WSe2 | Type II | MoS2 | WSe2 | MoS2
WSe2, WSe2
MoS2
|
Hydrogen evolution | [178, 179] |
| BiOI–TiO2 | Type I | BiOI | BiOI | TiO2
BiOI, TiO2
BiOI |
MO degradation | [180, 181] |
| BiOBr–TiO2 | Type II | TiO2 | BiOBr | TiO2
BiOBr, BiOBr TiO2
|
Degradation RhB and MO | [182, 183] |
| BiOI–SnS2 | Type II | BiOI | SnS2 | BiOI SnS2, SnS2
BiOI |
RhB degradation | [184] |
| BiOI–TiO2 | Type II | BiOI | TiO2 | BiOI TiO2, TiO2
BiOI |
MO degradation, RhB degradation | [185, 186] |
| BiOI–WO3 | Type II | BiOI | WO3 | BiOI WO3, WO3
BiOI |
Degradation tetracycline (TC) | [187] |
| ZnMn2O4–TiO2 | Type I | ZnMn2O4 | ZnMn2O4 | TiO2
ZnMn2O4, TiO2
ZnMn2O4
|
Orange II oxidation | [99] |
| Ag3PO4–TiO2 | Type II | Ag3PO4 | TiO2 | Ag3PO4
TiO2 TiO2
Ag3PO4
|
Degradation RhB and MB | [188] |
| Ag3PO4–BiVO4 | Type II | Ag3PO4 | BiVO4 | Ag3PO4
BiVO4, BiVO4
Ag 3PO4
|
Degradation RhB and MB | [189] |
| CuInS2–TiO2 | Type II | CuInS2 | TiO2 | CuInS2
TiO2, TiO2
CuInS2
|
4‐nitrophenol degradation | [190] |
| Bi12TiO20–TiO2 | Type II | Bi12TiO20 | TiO2 | Bi12TiO20
TiO2, TiO2
Bi12TiO20
|
RhB degradation | [191] |
| YFeO3–TiO2 | Type II | YFeO3 | TiO2 | YFeO3
TiO2, TiO2
YFeO3
|
Benzene oxidation, Orange II oxidation | [192] |
| CaFe2O4/MgFe2O4 | Type II | CaFe2O4 | MgFe2O4 | CaFe2O4
MgFe2O4, MgFe2O4
CaFe2O4
|
Degradation of isopropyl alcohol hydrogen evolution | [193] |
| BiOCl–SrFe12O19 | Type I | SrFe12O19 | SrFe12O19 | BiOCl SrFe12O19,
BiOClSrFe12O19
|
MB degradation | [194] |
| BiOCl–TiO2 | Type II | TiO2 | BiOCl | TiO2
BiOCl, BiOCl TiO2
|
MB degradation | [195] |
| BiOCl–SnO2 | Type II | BiOCl | SnO2 | BiOCl SnO2, SnO2
BiOCl |
RhB degradation | [196] |
| BiOCl–BiVO4 | Type II | BiOCl | BiVO4 | BiOCl BiVO4, BiVO4
BiOCl |
MO photodegradation | [197] |
| BiOI–CdWO4 | Type II | BiOI | CdWO4 | BiOI CdWO4, CdWO4
BiOI |
Degradation of TC and RhB | [198] |
| BiOBr–ZnO | Type II | BiOBr | ZnO | BiOBr ZnO, ZnO BiOBr |
MO decolorization | [199] |
| BiOI–ZnO | Type II | BiOI | ZnO | BiOI ZnO, ZnO BiOI |
Degradation of CR,MO | [200, 201] |
| BiOBr–CeO2 | Type II | CeO2 | BiOBr | CeO2
BiOBr, BiOBr CeO2
|
Degradation of RhB, MB, and bisphenol A (BPA) | [202] |
| BiOBr–WO3 | Type II | BiOBr | WO3 | BiOBr WO3, WO3
BiOBr |
Degradation of RhB, MO, and para‐chlorophenol (4‐CP) | [203] |
| BiOBr–BiVO4 | Type II | BiOBr | BiVO4 | BiOBr BiVO4, BiVO4
BiOBr |
Degradation of MB | [204, 205] |
| BiOBr–BiVO4 | Type I | BiVO4 | BiVO4 | BiOBr BiVO4, BiOBr BiVO4
|
Degradation of MB | [206] |
| Ag3VO4–WO3 | Type II | Ag3VO4 | WO3 | Ag3VO4
WO3, WO3
Ag3VO4
|
Degradation of TC | [159] |
| Bi2O3–WO3 | Type II | Bi2O3 | WO3 | Bi2O3
WO3, WO3
Bi2O3
|
Decomposition of RhB and 4‐nitroaniline (4‐NA) | [207] |
| Bi2O3–BaTiO3 | Type II | BaTiO3 | Bi2O3 | BaTiO3
Bi2O3, Bi2O3
BaTiO3
|
Degradations of MO and MB | [208] |
| AgBr–BiPO4 | Type II | AgBr | BiPO4 | AgBr BiPO4, BiPO4
AgBr |
MB degradation | [209] |
| Ag3PO4–AgBr | Type II | AgBr | Ag3PO4 | AgBr Ag3PO4, Ag3PO4
AgBr |
Degradation of MB and RhB | [210, 211] |
| BiOI–La2Ti2O7 | Type II | BiOI | La2Ti2O7 | BiOILa2
Ti2O7, La2Ti2O7
BiOI |
Degradation of RhB, dye X‐3B, MO | [212] |
| Cu2O–Ta2O5 | Type II | Cu2O | Ta2O5 | Cu2O Ta2O5, Ta2O5
Cu2O |
Generated hydrogen and oxygen | [213] |
| CuCrO2–SnO2 | Type II | CuCrO2 | SnO2 | CuCrO2
SnO2, SnO2
CuCrO2
|
Degradation of MB | [214] |
| CuCo2O4–TiO2 | Type II | CuCo2O4 | TiO2 | CuCo2O4
TiO2, TiO2
CuCo2O4
|
Hydrogen evolution, photocurrent density | [215] |
| CdS–LaFeO3 | Type II | CdS | LaFeO3 | CdS LaFeO3, LaFeO3
CdS |
Degradation MB, RhB, and MO | [216] |
| CuO–BiFeO3 | Type II | CuO | BiFeO3 | CuO BiFeO3, BiFeO3
CuO |
Degradation of MO | [217] |
| BiFeO3–ZnO | Type II | BiFeO3 | ZnO | BiFeO3
ZnO, ZnO BiFeO3
|
Photodegradation of 2,4‐dichlorophenol and RhB | [218] |
| BiVO4–Mn3O4 | Type II | Mn3O4 | BiVO4 | Mn3O4
BiVO4, BiVO4
Mn3O4
|
Degradation MB | [219] |
| BiOI–ZnTiO3 | Type II | BiOI | ZnTiO3 | BiOI ZnTiO3, ZnTiO3
BiOI |
Degradation of Rhodamine 6 G | [220] |
| LaCrO3–PbTiO3 | Type II | LaCrO3 | PbTiO3 | LaCrO3
PbTiO3, PbTiO3
LaCrO3
|
Degradation of phenol | [221] |
| CdS–Ni2P | Type II | CdS | Ni2P | CdS Ni2P, Ni2P CdS |
Hydrogen Evolution | [222] |
| BiVO4@Cu3SnS4 | Type II | BiVO4 | Cu3SnS4 | BiVO4
Cu3SnS4, Cu3SnS4
BiVO4
|
Degradation MB | [223] |
Even though better charge separation and improved photocatalysis are attained, some disadvantages do limit the photocatalytic performance of p–n heterojunctions. The joining of p‐type and n‐type semiconductors to build p–n junctions is negatively impacted by crystal lattice mismatching, which results in poor coupling at the interface and quenching of charge carrier migration. At the same time, migration of the energetic carriers that guarantee effective charge separation is achieved at the cost of partial loss of the energy obtained from the photons absorbed. This energy consumption loss reduces the reduction and oxidation potential of charge carriers, thus lowering the photocatalytic reaction rate.
4. Semiconductor–Metal (s–m) Heterojunctions
Interfacing a semiconductor with metal is a well‐known design strategy aimed at improving charge separation. The integration of metals with semiconductors results in Schottky/ohmic or plasmon junctions depending on the relative work functions. The minimum energy required to remove an electron from the Fermi (E f) level to the vacuum level is defined as the work function. When n‐type/p‐type semiconductors with higher/lower work functions contact a metal directly, free electrons flow from the higher Fermi level to the lower Fermi level until the two Fermi levels equilibrate. The two main mechanisms involved at the interface of the s–m junction photocatalytic system can produce either a Schottky/ohmic junction or one characterized by plasmonic effects. The former can be formed whenever the work function difference between semiconductor and metal at the interface is appropriate. When an n‐type semiconductor has a lower work function than the metal contacting it (ϕ m > ϕ sn), free electrons migrate from the lower work function (higher Fermi level) to the higher work function (lower Fermi level) until the Fermi levels equilibrate, resulting in an accumulation of negative charge—with positive charge remaining in the semiconductor layer due to electrostatic induction, as shown in Figure 3a.
Figure 3.

a) Schematic of n‐type‐metal Schottky junction formation, followed by light absorption and charge separation. b) Schematic of p‐type‐metal Schottky junction formation, followed by light absorption and charge separation.
The electric field formed at the metal–semiconductor interface cannot be screened effectively in the semiconductor due to the low concentration of free charge carriers there. This causes the free charge carrier concentration near the semiconductor surface to be depleted compared with the bulk; a space charge region (also called the depletion layer) is formed on one side of the semiconductor, with the electric field direction pointing from semiconductor to metal. This makes the energy band bend upward, going from semiconductor to metal, thus forming the Schottky barrier. It should be noted that electron flow hardly affects E fm due to the high density pool of free electrons in the metal. Instead, only the band level of the semiconductor shifts up or down. In the case of integrating, a p‐type semiconductor having a higher work function than the metal (ϕ m < ϕ sp), as shown in Figure 3b, free electrons migrate from metal‐to‐semiconductor; positive charge accumulates in the metal and negative charge in the semiconductor, forming a space charge region that results in bending the band downward, and in an electric field that points from metal to semiconductor. Generally, a Schottky barrier may promote charge separation that results in the enhancement of photocatalytic performance by preventing the recombination of electron–hole pairs. Normally, most noble metals possess higher work functions than n‐type semiconductors and lower than p‐type semiconductors, thus favoring the formation of Schottky barriers.
In contrast, when metal is in contact with an n‐type semiconductor of higher work function or a p‐type semiconductor of lower work function (ϕ m < ϕ sn or ϕ m > ϕ sp) free electrons from the n‐type (holes from the p‐type) semiconductor accumulate in the space charge region. The bands bend opposite the band in a Schottky junction, where no barrier is created between metal and semiconductor. The metal–semiconductor interface in the absence of a barrier results in an ohmic junction, as shown in Figure 4 . Generally, band bending and the creation of an inner electric field at the interface results in the migration and separation of low energy electrons (holes) to the metal and confines high energy charges to the semiconductors.[ 12, 34, 35 ]
Figure 4.

a) Schematic of p‐type‐metal ohmic junction formation, light absorption, and charge separation. b) Schematic of n‐type‐metal ohmic junction formation, light absorption, and charge separation.
Upon light absorption, photoexcited electrons from the CB of the n‐type semiconductor are transferred to the metal; this process induces oxidation at the semiconductor and reduction at the metal, as illustrated in Figure 4b. Conversely, in the case of a p‐type semiconductor, the photoexcited holes from the VB of the p‐type semiconductor migrate and collect on the metal, thus favoring oxidation on the metal and reduction on the semiconductor, as shown in Figure 4a.
Previously, our group combined experiments with theoretical simulations to demonstrate a set of design rules and working principles in p‐type semiconductor–metal hybrid structures incorporating Cu2O(100)–Pd and Cu2O(111)–Pd heterojunctions; these devices form Schottky barriers and ohmic interfaces, respectively, that result in improved photocatalysis. The Cu2O(100) work function is 7.2 eV and that of Cu2O(111) is 4.8 eV. At the Cu2O(100)–Pd junction, the Pd metal work function is 1.714 eV lower than that of Cu2O(100), inducing migration of free electrons from Pd to Cu2O(100) that results in a Schottky barrier. The formation of such a barrier at the Cu2O(100)–Pd interface facilitates the migration of photoexcited holes to Pd metal and retains photoexcited electrons on Cu2O(100), which results in efficient charge separation and improved optoelectronic conversion. At the Cu2O(111)–Pd interface, the Pd metal work function is 2.523 eV higher than that of Cu2O(111), which disfavors formation of a Schottky barrier and allows ohmic contact formation. Our investigation showed that the design of the semiconductor surface facet matters both for the establishment of a Schottky barrier/ohmic contact and for spatial charge separation. By taking the advantage of Schottky barrier formation, Pd‐decorated Cu2O cubes at moderate Pd density produced hydrogen at a rate of 2.20 mmol g−1.[ 36 ]
Since the work function plays a critical role in determining the best type of heterojunction, tuning the work function using different approaches, such as facet selection, should provide a method of tuning charge separation. For example, Li et al.[ 37 ] designed a facet‐dependent n‐type‐metal heterojunction for spatial separation of photogenerated electrons and holes using Pt, Au, and Ag metals with (010) and (110) BiVO4 crystal facets.[ 38 ] Their results showed that metals or oxides can be deposited selectively on specific facets of BiVO4; different facets result in selective accumulation of electrons (holes) and adsorption of metal ions, leading to selective photodeposition and efficient charge separation.
It is universally concluded that Schottky barriers created at the interface of a semiconductor and metal allow a one‐way flow of charges that ensure efficient charge separation of photogenerated charge carriers, thus enhancing photocatalytic performance. Although this principle is well accepted for bulk heterojunctions, it may not work for nanosized ones. For bulk heterojunction materials, the Fermi level—responsible for charge migration—greatly depends on carrier concentration. However, Fermi levels of nanosized heterojunction materials are greatly affected by quantum‐size effects, surface terminations/states, lattice distortions, and impurity doping. Mechanisms behind the improved photocatalytic activity of nanosized heterojunction systems have been investigated.[ 39, 40 ]
In parallel, Yan et al. have studied the formation of nanosized Schottky or ohmic junctions that greatly improve photocatalytic activity. Their work on the nanosized ohmic junction Ag/ZnO and Schottky junction Pt/ZnO shows that the Ag/ZnO ohmic junction exhibits higher photocatalytic efficiency than the Schottky junction Pt/ZnO model system. The separation of the photogenerated charge carriers that results in improved efficiency is greatly influenced by quantum size effects and the direction of the electric fields within the semiconductor–metal interface, which together strongly influence photocatalytic efficiency.[ 41 ]
In contrast, the plasmonic effect occurs only under certain controlled conditions, when plasmonic metal bands are located in the visible or the near‐infrared (NIR) regions. Materials incorporating Au, Ag, or Cu—termed “plasmonic metals”—have strong plasmonic properties and have bands that are indeed located in the visible or NIR region. Importantly, the plasmonic properties of a metal are highly dependent on the size and shape of its layer, which can range from tens to hundreds of nanometers; thus, by increasing metal particle size and the dielectric properties of the surrounding medium, absorption can be shifted into the visible light region. Some other metals, such as Pt and Pd, possess very small excitation cross‐sections for surface plasmons and in small particle sizes their plasmonic bands are mainly located in the UV region.[ 12 ]
Plasmonic Au/TiO2 heterojunction photocatalysts that exhibit efficient charge separation have been synthesized by Bian et al. Due to surface plasmon resonance (SPR), Au NPs layered on the basal and lateral surfaces of TiO2 impart a strong photoelectrochemical response in the visible light region (400–800 nm). Electrons injected from excited Au NPs (nanoparticles) on the basal surfaces of meso‐TiO2 are efficiently delivered to the lateral surfaces of the crystal through the TiO2 nanocrystal network. This feature allows for reduced loading of the metal on the semiconductor, which is especially advantageous for NIR‐active metallic nanostructures requiring larger sizes (e.g., Au nanorods). This anisotropic electron flow appreciably minimizes the recombination of electrons and holes in the Au NPs and enhances visible light photocatalytic activity by more than an order of magnitude, as compared to that of conventional Au/TiO2 NP systems.[ 42 ]
Jiang et al. studied the key role of metals in the photocatalytic activity of Au–CeO2 junctions. They explored the effects on the equilibrium between plasmon resonance and surface catalysis by loading various amounts and particle sizes of Au NPs on CeO2. Photoexcitation and surface catalysis vary inversely with Au NP size, but both NP loading and size determine the final photocatalytic performance of propylene oxidation under visible (>420 nm) light illumination. Increasing Au loading seems to promote photoabsorption, charge separation, and resonant energy transfer due to enhanced Au SPR. However, increased Au particle size leads to saturation and also decreases the number of exposed active sites that can adsorb reactant species. In addition, large Au NPs (>10 nm) demonstrate distinct passivity toward O2 dissociation and activation. In general, this investigation shows that the design of efficient metal−semiconductor systems for ideal solar energy conversion requires medium‐sized particles (6–12 nm) for optimizing the plasmonic and catalytic properties of metallic nanostructures.[ 43 ]
Despite that so many different junction designs have been investigated, the overall principles are more or less similar to those discussed earlier. Representative works on Schottky/ohmic junctions and plasmonic effects are summarized in Table 2 .
Table 2.
Summary of representative semiconductor–metal junctions
| Model/sample | Junction type | Oxidation site | Reduction site | Charge migration direction across the junction | Absorbance | Application | References |
|---|---|---|---|---|---|---|---|
| Pt–PbS | Schottky | PbS | Pt | PbS Pt |
532 nm | Water splitting | [224] |
| Co–TiO2 | Schottky | TiO2 | Co | TiO2
Co |
– | Hydrogen evolution | [225] |
| Au–Bi2S3 | Schottky/Plasmon | Bi2S3 | Au | Bi2S3
Au |
560 nm | Degradation of MB | [226] |
| Pd–SiC | Schottky | SiC | Pd | SiC Pd |
530 nm | Hydrogenation of furan derivatives | [227] |
| Ag–ZnO | Plasmon/Schottky | ZnO | Ag | Ag ZnO |
400 nm | Degradation of RhB | [228] |
| Ag–TiO2 | Schottky | TiO2 | Ag | TiO2
Ag |
380–500 nm | Degradation of RhB | [229] |
| Au–TiO2 | Plasmon/Schottky | TiO2 | Au | Au TiO2
|
540–550 nm | Ethanol–water | [230] |
| Au–ZnO | Schottky | ZnO | Au | ZnO Au |
350 nm | Degradation of RhB | [231] |
| Au–TiO2 | Schottky/Plasmon | Au | TiO2 | Au TiO2
|
λ > 410 nm | Degradation MO | [232] |
| W–WO3 | Ohmic | WO3 | W | WO3
W |
350–400 nm | Degradation of gaseous acetaldehyde | [233] |
| Au–BiVO4 | Plasmon/Schottky | Au | BiVO4 | Au BiVO4
|
λ > 420 nm | Dye degradation and water oxidation | [234] |
| Ni–TiO2 | Plasmon | Ni | TiO2 | Ni TiO2
|
495 nm < λ < 800 nm | Degradation of MB | [235] |
| Au–TiO2 | Plasmon | Au | TiO2 | Au TiO2
|
λ > 515 nm | Water splitting | [236] |
| Ag–ZnO | Plasmon | Ag | ZnO | Ag ZnO |
438 nm | Degradation of MO | [237] |
| Ag–TiO2 | Plasmon | Ag | TiO2 | Ag TiO2
|
553 nm | Degradation of RhB | [238] |
| Au–SnO2 | Plasmon | SnO2 | Au | Au SnO2
|
550 nm | Degradation of RhB | [239] |
| Au–TiO2 | Plasmon | Au | TiO2 | Au TiO2
|
550 nm | Decomposition of MB | [240] |
| M(Au, Ag, Cu) –TiO2 | Plasmon | M | TiO2 | M TiO2
|
Au (521 nm), Ag (540 nm) and Cu (800 nm) | Photo‐oxidation of benzaldehyde and nitrobenzaldehyde | [241] |
| Bi–TiO2 | Plasmon | Bi | TiO2 | Bi TiO2
|
λ > 420 nm | Removal of ppb‐level NO in air | [242] |
| Au–WO3 | Plasmon | Au | WO3 | Au WO3
|
450–700 nm | RhB photodegradation | [243] |
| Au–TiO2 | Plasmon | Au | TiO2 | Au TiO2
|
λ > 450 nm | Oxidation of 1‐phenylethanol | [244] |
| Ag–TiO2 | Plasmon | Ag | TiO2 | Ag TiO2
|
450–700 nm | Water splitting and methanol oxidation | [245] |
| Ag–TiO2 | Plasmon | Ag | TiO2 | Ag TiO2
|
λ = 400–750 nm | MB photodegradation | [246] |
| Au–CeO2 | Plasmon | Au | CeO2 | Au CeO2
|
λ > 520 nm | Aerobic oxidations of propylene | [43] |
| Au–TiO2 | Plasmon | Au | TiO2 | Au TiO2
|
548 nm | MB, RhB degradation | [42] |
| Au–TiO2 | Plasmon | Au | TiO2 | Au TiO2
|
Visible light | Degradation MB | [247] |
| Au–CdSe | Plasmon | Au | CdSe | Au CdSe |
λ > 700 nm | Hydrogen generation | [248] |
Even though a great deal of effort has been exerted to understand the selective steering of charges at s–m junctions, it is poorly known how this weakens the redox capability of high‐energy electrons and holes at the reaction site. Apparently, charge separation and transfer works at the expense of the redox ability of charge carriers, and energy is lost during their transfer from semiconductor to metal due to the difference between the E fm energy levels and the CB of an n‐type semiconductor (or the VB of a p‐type semiconductor). Still, a significant amount of leading‐edge research is being undertaken to overcome the challenges of attaining the efficient charge separation required for improved optoelectronic conversion. Semiconductor–semiconductor–metal and semiconductor–metal–semiconductor heterojunctions are other well‐studied heterojunctions for minimizing the drawbacks of p–n and semiconductor–metal heterojunctions.
5. All‐Solid‐State Ternary Heterojunctions (Z‐Schemes)
It has been a long‐standing challenge to realize the high degree of charge separation in semiconductor‐based heterojunction photocatalysts necessary for efficient optoelectronic conversion. In contrast to Type‐II and Type‐III semiconductor–semiconductor (s1–s2) junctions that steer charge flow favorably and ensure charge separation onto separate semiconductors, most s1–s2 heterojunctions fail due to their straddling bandgaps (Type I) (Figure 2a) in which both photogenerated electrons and holes are deposited in the same semiconductor with a small bandgap; this circumstance results in high recombination.
Inspired by the natural process of photosynthesis in green plants, the Z‐scheme has become prominent recently as an additional model system for water splitting. This scheme includes two different semiconductors (s1 and s2) and an appropriately reversible acceptor/donor pair (AD‐species) and carries out two half‐reactions on the corresponding surfaces of the semiconductors, as shown in Figure 5a.
Figure 5.

a) Schematic of band alignments and charge flows in the Z‐scheme. δE 1 (δE 2) denotes the energy barrier for diffusion of high energy holes (electrons) across the interface or is the relative potential between VB of S1 (CB of S2) and the oxidation (reduction) potential of acceptor (A) and donor (D)‐species. b) Schematic showing the band bending and charge separation mechanism in an all‐solid‐state S1–m–S2 Z‐scheme heterojunction.
In other words, the Z‐scheme guarantees that each of two half‐reactions can be realized on one of two spatially separated semiconductors possessing moderate E g . Essentially, photons with moderate energy can drive this system, which means that the visible light portion of the solar spectrum can be utilized. Importantly, AD‐species (such as Fe3+/Fe2+ and IO3 −/I−) can be interposed to effect the separation of charge carriers formed by the consumption of energetic holes from s1 and electrons from s2. There are also some Z‐scheme systems without AD‐species in which two different semiconductors are in direct contact with each other, and in which energetic holes from the CB of s1 recombine with high‐energy electrons from the VB of s2 at the interface junction. Unfortunately, there remain drawbacks restricting further photocatalytic enhancement of Z‐scheme systems. For instance, there is no driving force to accelerate the process of reversible transition of redox mediators for realizing effective spatial separation of charges or for promoting the recombination of e–h, especially for high energy holes with low migration rates in s1. Hence, this architecture relies strongly on the band positions between the VB of s1 and the CB of s2 relative to the redox potential of the AD species (E 1 and E 2, respectively); this places restrictions on which combinations of semiconductors will work synergistically to create efficient photocatalytic heterostructures. A detailed tutorial and reviews of such conventional Z‐scheme systems exist.[ 2, 44, 45, 46 ] Another well‐known Z‐scheme heterojunction is an all‐solid‐state semiconductor–metal–semiconductor/semiconductor–semiconductor–metal ternary Z‐scheme that pays considerable attention to overcoming the aforementioned drawbacks and puts forth a solution to the two central issues of charge transport—the steering of charge flows across the interface and the assurance of charge separation—so as to improve photocatalytic efficiency (shown schematically in Figure 5b). This architecture alleviates the problem of band edge position mismatch between two semiconductors by aligning their Fermi levels and shifting the bands up or down in a Z‐scheme while also minimizing lattice mismatch and transforming the Type‐I and Type‐III p–n junctions into Type II—thus making efficient charge separation more favorable and hence improving photocatalysis. All‐solid‐state Z‐scheme heterojunction designs have been reviewed specifically.[ 28, 46, 47, 48, 49, 50 ] Here, we focus mainly on the recent advances and progress in these all‐solid‐state Z‐scheme designs.
In 2015, Li et al. from our group used a combination of theory and experiment to achieve a perfect Z‐scheme by properly aligning the bandgap of Ag2S in a TiO2–Ag–Ag2S heterojunction. The work function difference between Ag and Ag2S caused free electrons to flow from the low work function (high Fermi level) of Ag to the high work function (low Fermi level) of Ag2S until their Fermi levels equilibrated, resulting in an upshift and downward band bending. As a consequence, the TiO2–Ag–Ag2S heterostructure aligned to form a perfect Z‐scheme. Upon exposure of the heterojunction to light, high energy photoexcited holes and electrons residing on TiO2 and Ag2S favor oxidation and reduction, respectively, on the separate semiconductors, whereas low‐energy electrons and holes are confined to the intermediate Ag metal. The rate of hydrogen generation by this system under full solar insolation is 6.3 μmol h−1—higher than the sum of λ < 400 nm (1.3 μ molh−1) and λ > 400 nm (0.19 μmol h−1), as shown in Figure 6 .[ 51 ]
Figure 6.

a) Average rates of photocatalytic hydrogen production and b) photocurrents versus time (I–t) curves of Ag2S–(Ag)–TiO2 hybrid structures under various light illumination conditions (full spectrum, λ < 400 nm and λ > 400 nm). a,b) Reproduced with permission.[ 51 ] Copyright 2015, Tsinghua University Press and Springer‐Verlag Berlin Heidelberg.
The performance enhancement suggests that the TiO2–Ag–Ag2S Z‐scheme substantially improved the charge generation and charge separation processes under full spectrum illumination. Average lifetime analysis of the photogenerated carriers from open‐circuit voltage decay measurements under full light spectrum illumination confirms the improvement in charge separation. The carrier lifetime of TiO2–Ag–Ag2S is prolonged, demonstrating the key role trace Ag plays in the Z‐scheme architecture.
Zhuang et al. from our group, successfully synthesized ZnS–CdS binary and ZnS–(CdS–Au, Pt, and Pd) ternary heterojunctions; these nanosystems justify and confirm that a transition from Type I to Type II is possible and established a promising approach for improving the efficiency of such systems. The work function difference (W CdS > W m) of the ZnS–(CdS–Au, Pt, and Pd) heterojunction allows free electrons to flow from metal to CdS until the Fermi levels align and results in the upshifting and downward band bending of CdS. When the heterostructure is exposed to light, high energy photogenerated electrons migrate to ZnS while photogenerated holes migrate to the CdS/metal interface, ensuring efficient charge separation. Activities of these nanosystems, measured as the rate of hydrogen evolution, are 13.5, 36.5, 83.5, and 101 μmol h−1 for ZnS–CdS, ZnS–(CdS–Au), ZnS–(CdS–Pd), and ZnS–(CdS–Pt), respectively.[ 52 ]
Li et al. compared work functions of the CdS–Au–WO3 and CdS–Pt–WO3 heterostructures, determining that the sequential work functions of these two heterostructures are 4.9 < 5.0 < 5.05 and 4.9 < 5.2 > 5.05 eV, respectively. These results imply that the Fermi level of CdS is higher than that of either Au or Pt and that the Fermi level of WO3 is between the levels of these two. In this system, free electrons transfer from CdS to Au (or Pt), from Au to WO3, and also from WO3 to Pt; this results in the formation of depletion and accumulation layers at the CdS/Au and Au/WO3 interfaces, respectively, and depletion layers on both sides of the CdS/Pt and Pt/WO3 interfaces.
When the CdS–Au–WO3 heterojunction is exposed to light, photoinduced electrons from WO3 transfer to the intermediate Au layer, and holes are created at the WO3 semiconductor layer under the influence of an interfacial electric field, favoring oxidation. At the CdS–Au interface, photoinduced holes migrate to the intermediate Au layer and electrons collect at CdS, where reduction can then take place. The CdS–Pt–WO3 heterojunction functions similarly.
The finding shows explicitly that work function differences result in a lower Schottky barrier height (W CdS−W Au < W CdS–W Pt) at the Au/CdS interface than at Pt/CdS; thus charge carrier transfer in the WO3/Au/CdS heterostructure is smoother, and H2 evolution efficiency better than in WO3/Pt/CdS. This work demonstrates that modulation of the intermediate metal work function plays a crucial role in Z‐scheme photocatalysis.[ 53 ]
As promising types of photocatalysts, generally, all Z‐scheme (i.e., including all‐solid‐state Z‐scheme and p–n junctions) heterojunction designs have been proposed to harvest energy over a broad solar spectral range by interfacing two semiconductors with a staggered bandgap. Their utilization is, however, often limited by the difficulty of achieving selective collection of low energy photogenerated charges at the interface while excluding high energy ones. Building on semiconductor–metal, p–n, and Z‐scheme designs, we and other groups have performed experimental and theoretical first‐principles investigations on energy‐dependent Z‐scheme designs of p‐type–metal–n‐type and n‐type–metal–p‐type heterostructures, which hold the promise of being able to steer charges selectively to the intermediate metal for attaining more effective charge separation. Representative summary of semiconductor–semiconductor–metal and semiconductor–metal–semiconductor photocatalyst junction studies are presented in Table 3 .
Table 3.
Summary of representative semiconductor–semiconductor–metal and semiconductor–metal–semiconductor photocatalyst junction studies
| Sample/model | Heterojunction type | Oxidation site | Reduction site | Charge‐transfer direction across the junction | Activity test/application | References |
|---|---|---|---|---|---|---|
| Ag2O‐Fe‐TiO2 | p‐S1‐m‐n‐S2 | TiO2 | Ag2O | TiO2
Fe, Ag2O Fe |
CO2 Conversion | [249] |
| BiOBr–Ag–AgBr | p‐S1‐m‐n‐S2 | BiOBr | AgBr | BiOBr Ag, AgBr Ag |
MO degradation | [250] |
| Ag3PO4–Ag–Bi2MoO6 | p‐S1‐m‐n‐S2 | Ag3PO4 | Bi2MoO6 | Ag3PO4
Ag, Bi2MoO6
Ag |
RhB degradation | [251] |
| TiO2–Pt–CdS | n‐S1‐m‐n‐S2 | TiO2 | CdS | TiO2
Pt, CdS Pt |
CO2 Photoreduction | [252] |
| AgCl–Ag–BiOCl | n‐S1‐m‐p‐S2 | AgCl | BiOCl | Ag BiOCl, Ag AgCl |
MO Degradation | [253] |
| CdS–Au–ZnO | n‐S1‐m‐n‐S2 | ZnO | CdS | ZnO Au, CdS Au |
H2 generation | [254] |
| CdS–Au–TiO2 | n‐S1‐m‐n‐S2 | TiO2 | CdS | TiO2
Au, Au TiO2
|
MV2+reduction | [255] |
| CdS–Au–BiOCl | n‐S1‐m‐p‐S2 | BiOCl | CdS | BiOCl Au, CdS Au |
MO, RhB, and Phenol Degradation | [256] |
| BiVO4–Au–Cu2O | n‐S1‐m‐p‐S2 | BiVO4 | Cu2O | BiVO4
Au, Cu2O Au |
CO2 Photoreduction | [257] |
| ZnO–Pt–CdS | n‐S1‐m‐n‐S2 | CdS | Pt | CdS ZnO, ZnO Pt |
H2 generation | [258] |
| CdS–Ag–Bi2MoO6 | n‐S1‐m‐n‐S2 | Bi2MoO6 | CdS | Bi2MoO6
Ag, CdS Ag |
RhB degradation | [259] |
| BiVO4–Ag–Cu2O | n‐S1‐m‐p‐S2 | BiVO4 | Cu2O | BiVO4
Ag, Ag Cu2O |
TC degradation | [260] |
| WO3–Ag–AgCl | n‐S1‐m‐n‐S2 | WO3 | AgCl | Ag AgCl, Ag WO3
|
RhB degradation | [261] |
| In2S3–Au–BiVO4 | n‐S1‐m‐n‐S2 | BiVO4 | In2S3 | BiVO4
Au, In2S3
Au |
RhB and phenol Degradation | [262] |
| TiO2–Pt–SnO2 | n‐S1‐m‐n‐S2 | SnO2 | TiO2 | SnO2
Pt, TiO2
Pt |
MB degradation | [263] |
| CdS–Pt–Mo2C | n‐S1‐m‐p‐S2 | CdS | Pt | CdS Mo2C, Mo2C Pt |
H2 generation | [264] |
| α‐Fe2O3–Ag–AgCl | n‐S1‐m‐p‐S2 | a‐Fe2O3 | AgCl | AgCl Ag, AgCl α‐Fe2O3
|
RhB degradation | [265] |
| Ag3PO4–Ag–SiC | n‐S1‐m‐n‐S2 | Ag3PO4 | SiC | Ag3PO4
Ag, SiC Ag |
MO and Phenol degradation | [266] |
| α/β‐Bi2O3–Ag–AgCl | n‐S1‐m‐n‐S2 | Bi2O3 | AgCl | Bi2O3
Ag, Ag AgCl |
RhB and acid orange dyes degradation | [267] |
| CdS–Au–WO3 | n‐S1‐m‐n‐S2 | WO3 | CdS | WO3
Au, Au CdS |
Hydrogen and oxygen evolution | [268] |
| Pt–CeO2–ZnO | m‐n‐S1‐n‐S2 | Pt | CeO2 | CeO2
ZnO, ZnO Pt, ZnO CeO2
|
Phenol degradation | [269] |
| Au–CuO–Co3O4 | m‐p‐S1‐p‐S2 | CuO,Co3O4 | – | CuO Au, Co3O4
Au |
O2 evolution | [270] |
| Ag–AgCl–BiPO4 | m‐n‐S1‐n‐S2 | Ag | BiPO4 | Ag AgCl, AgCl BiPO4, BiPO4
AgCl |
RhB degradation | [271] |
| Ag–AgVO3–BiOCl | m‐n‐S1‐n‐S2 | AgVO3 | BiOCl | AgVO3
Ag, AgVO3
BiOCl |
MB degradation | [272] |
| Au–ZnO–TiO2 | m‐n‐S1‐n‐S2 | ZnO | Au | Au TiO2, ZnO TiO2, TiO2
ZnO |
Photo‐oxidation of phenol and 4‐chlorophenol | [273] |
| Ag–AgBr–InVO4 | m‐n‐S1‐n‐S2 | InVO4 | AgBr | InVO4
AgBr, Ag AgBr, AgBr InVO4
|
RhB degradation | [274] |
| Ag–TiO2–ZnO | m‐n‐S1‐n‐S2 | ZnO | Ag | ZnO TiO2, TiO2
Ag, TiO2
ZnO |
Phenol degradation | [275] |
| Ag–SnS–TiO2 | m‐n‐S1‐n‐S2 | SnS | Ag | SnS Ag, TiO2
Ag |
RhB and MB degradation | [276] |
| Ag–AgBr–Ag3VO4 | m‐n‐S1‐n‐S2 | AgBr‐ | Ag3VO4 | Ag AgBr, Ag BrAg3VO4, Ag3VO4
AgBr |
MO degradation | [277] |
| Ag–Ag2O–BiOCl | m‐p‐S1‐p‐S2 | Ag2O | BiOCl | Ag2O Ag, BiOCl Ag |
RhB degradation | [278] |
| Ag–Ag2S–CuS | m‐n‐S1‐p‐S2 | Ag2S | Ag | CuS Ag, Ag2S Ag, CuS Ag2S |
2,4‐Dichlorophenol degradation | [279] |
| Ag–AgCl–ZnO | m‐n‐S1‐n‐S2 | AgCl | ZnO | AgCl ZnO, Ag ZnO |
RhB and MO degradation | [280] |
| Cu–Cu2O–ZnO | m‐p‐S1‐n‐S2 | Cu2O | ZnO | Cu Cu2O, Cu2O ZnO, ZnO Cu2O |
H2 generation | [281] |
| Pt–In2O3–TiO2 | m‐n‐S1‐n‐S2 | In2O3 | TiO2 | Pt In2O3, In2O3
TiO2
|
CR degradation and H2 generation | [282] |
| Pt–In2O3–TiO2 | m‐n‐S1‐n‐S2 | In2O3 | Pt | In2O3
TiO2, TiO2
Pt, TiO2
In2O3
|
RhB degradation | [283] |
| Ag‐AgBr‐Bi2MoO6 | m‐n‐S1‐n‐S2 | AgBr | Bi2MoO6 | Ag AgBr, Ag Bi2MoO6
|
MB degradation | [284] |
| Au–TiO2–SnO2 | m‐n‐S1‐n‐S2 | TiO2 | SnO2 | Au TiO2, Au SnO2, TiO2
SnO2
|
RhB degradation | [285] |
| TiO2–Fe2O3–Cu | n‐S1‐n‐S2‐m | TiO2 | Fe2O3 | TiO2
Fe2O3, Fe2O3
Cu, Fe2O3
TiO2
|
MO degradation | [286] |
| Cu–Cu2O–ZnO | m‐p‐S1‐n‐S2 | Cu2O | ZnO | Cu Cu2O, Cu ZnO, Cu2O ZnO |
MB degradation | [287] |
| Pt–CdS–h–BiOBr | m‐n‐S1‐p‐S2 | BiOBr | CdS | Pt h‐BiOBr, h‐BiOBr CdS, CdS h‐BiOBr |
MB degradation | [288] |
| Ag–AgBr–TiO2 | m‐n‐S1‐n‐S2 | AgBr | TiO2 | Ag AgBr, Ag BrTiO2, TiO2
AgBr |
MB degradation | [289] |
| Ag–SrTiO3–TiO2 | m‐n‐S1‐n‐S2 | SrTiO3 | TiO2,Ag | SrTiO3
Ag, SrTiO3
TiO2, TiO2
SrTiO3
|
RhB degradation | [290] |
| Cu–SrTiO3–TiO2–Cu | m‐n‐S1‐n‐S2‐m | Cu | Cu | SrTiO3
TiO2, TiO2
Cu, TiO2
SrTiO3, SrTiO3
Cu |
H2 generation | [291] |
| Fe3O4–TiO2–Ag | n‐S1‐n‐S2‐m | Ag | Fe3O4 | Ag TiO2, TiO2
Fe3O4
|
AMP degradation | [292] |
| CuS–TiO2–Pt | p‐S1‐n‐S2‐m | CuS | Pt | TiO2
Pt, TiO2
CuS |
H2 production | [293] |
| In2O3–ZnO–Ag | n‐S1‐n‐S2‐m | In2O3 | ZnO | In2O3
ZnO, Ag ZnO, ZnO Ag nanowire |
MO and 4‐nitrophenol degradation | [294] |
| Ag3VO4–Ag3PO4–Ag | p‐S1‐p‐S2‐m | Ag3VO4 | Ag | Ag3VO4
Ag3PO4, Ag3PO4
Ag, Ag3PO4
Ag3VO4
|
Acid blue 92 (AB92) degradation | [295] |
| NiO–ZnO–Au | p‐S1‐n‐S2‐m | ZnO | NiO, Au | ZnO Au, ZnO NiO, NiO ZnO |
RhB degradation | [296] |
| NiO–ZnO–Pt | p‐S1‐n‐S2‐m | ZnO | NiO, Pt | ZnO Pt, ZnO NiO, NiO ZnO |
MO degradation | [297] |
| MoS2–TiO2–Au | p‐S1‐n‐S2‐m | MoS2 | TiO2 | Au TiO2, Au MoS2, MoS2
TiO2, TiO2,
MoS2
|
Current density and H2 generation | [298] |
Recently, our research group has proposed a promising ternary energy‐dependent Z‐scheme incorporating both an n‐type semiconductor–metal–p‐type–semiconductor and a p‐type semiconductor–metal–n‐type semiconductor heterojunction photocatalyst using first‐principles calculations. This design features a work function cascade with W n < W m < W p and W p < W m < W n for the two heterojunctions, respectively (Figure 7 ). These systems are designed to steer charge flow and enhance effective charge separation by combining the merits of traditional Z‐scheme, p–n, and s–m systems so that they work synergistically to realize high photocatalytic performance. The intermediate metal not only lowers the lattice matching and band alignment requirements between the two semiconductors but also induces band bending at the p–m and m–n interfaces via charge migration that lines up the Fermi levels. Such band bending enables selective steering of low energy charges from the two semiconductors to the intermediate metal while confining high‐energy electrons and holes to the individual p‐type and n‐type semiconductors, respectively, so as to enable oxidation and reduction reactions to take place.[ 54, 55 ]
Figure 7.

Energy‐dependent Z‐scheme designs of n‐type–metal–p‐type Schottky junction and p‐type–metal–n‐type ohmic junction models in which: a) An energy‐dependent Z‐scheme n–m–p design allows free electron migration from n‐type to metal and then to p‐type until Fermi levels are equilibrated. b) Upon illumination low‐energy photoexcited electrons from the n‐type layer and holes from p‐type are transferred to the intermediate metal layer while high‐energy electrons are confined to their semiconductors. a,b) Reproduced with permission.[ 54 ] Copyright 2020, American Chemical Society. c) An energy‐dependent Z‐scheme p–m–n design allows free electrons to migrate from p‐type to metal to n‐type until the Fermi levels are equilibrated. d) Upon illumination, low‐energy photoexcited holes from the p‐type layer and electrons from n‐type are transferred to the intermediate metal and high‐energy electrons are confined to the individual semiconductors. c,d) Reproduced with permission.[ 55 ] Copyright 2019, Royal Society of Chemistry.
A combined experimental and theoretical study of an n‐type–metal–p‐type TiO2–Pd–Cu2O Z‐scheme has been performed recently by Ye et al. Their design achieved improved photocatalysis by interfacing n‐type TiO2(001) and p‐type Cu2O(100) facets with a layer of Pd metal placed between them; this design produced the desired bandgap alignment for inducing migration of photoexcited electrons from TiO2(001) to Pd and holes from Cu2O(100) to Pd. The TiO2(001) < Pd < Cu2O(100) work functions ordering allows free electrons to flow from TiO2(001) to Pd and from Pd to Cu2O(100) and equilibrates the Fermi levels. Upon light illumination, this facet hybrid junction facilitates low energy electron transfer from the TiO2(001) facet to the intermediate Pd layer and hole migration from Cu2O(100) to Pd; good charge separation is produced by confining high energy holes at TiO2(001)—enabling oxidation—and high‐energy electrons at Cu2O(100)—enabling reduction. This hybrid TiO2(001) < Pd < Cu2O(100) design has 1.37–3.12 times higher photocurrent density and 1.22–2.06‐fold higher phenol degradation efficiency than another three‐hybrid design that also incorporates a TiO2(101) facet or Cu2O(111) facet in contact with Pd at an interface.[ 56 ]
Recently, an interesting n–metal–p Janus plasmonic heteronanocrystals of Au/(PbS‐CdS) have been synthesized by Wan et al. The construction of these heterojunctions investigates that hot plasmonic electrons and holes collected simultaneously on individual semiconductors. The minimal Schottky barrier and ohmic contact created at the Au–CdS and Au–PbS interfaces enhance efficient separation of plasmonic electrons and smooth transfer of hot plasmonic holes, respectively. The result shows an extended lifetime of the charge separated state, and superior in photocatalytic CO2 performance reduction.[ 57 ]
The extension of ternary heterojunction designs to include an energy‐dependent Z‐scheme p–m–n and n–m–p heterojunction that can steer charges selectively across the interface presents a better opportunity to achieve good charge separation and thereby enhance photocatalytic activity. The inner electric field established at the junction assisted by band bending drives low energy holes and electrons to the intermediary metal and thereby lowers the probability of undesirable electron–hole pair recombination and keeps high‐energy electrons and holes apart by confining them to the individual semiconductors, finally resulting in good charge separation. The intermediary metal not only serves as a center of recombination but also equilibrates the Fermi levels across the interface and minimizes lattice mismatch between the two semiconductors. In general, this p–m–n and n–m–p strategy may, thus, pave the way for making more efficient Z‐scheme photocatalysts for practical applications. Our extension of this design that utilizes thin layers in an energy‐dependent Z‐scheme, the Cu2S–Pt–WO3 (p‐type–metal–n‐type) heterojunction, permits the exploration of an alternative way of realizing efficient charge separation. This system demonstrates increased charge flow across the junction compared to its bulk counterpart and exhibits a higher electron density on each surface that should produce enhanced optoelectronic conversion.[ 58 ]
6. Semiconductor–Graphene Heterojunctions
Until now, achieving good charge separation and absorption of broad‐spectrum visible light either in a single semiconductor or by the interfacing of two semiconductors either alone or with metal is a challenge that has prevented their practical application. Shifting optical absorption from UV to the visible light region to maximize the quantum efficiency of single semiconductors in combination with graphene has emerged as a new prospect. Graphene is a well‐known material that possesses high surface area, high conductivity, and good adsorptive properties; these lead to improved accumulation of charge and effective charge separation.[ 20, 59, 60, 61, 62, 63, 64 ]
Williams et al. synthesized a photoactive graphene–TiO2 nanocomposite with graphene oxide (GO) suspended in ethanol. Upon UV light irradiation, photoexcited electrons transferred from TiO2 to GO; this was confirmed by the reduction accompanying changes in the absorption of the GO, as evidenced by the shift in color of the suspension from brown to black. No significant change was observed upon UV light illumination when TiO2 was excluded from the solution, confirming that surface electrons migrate from TiO2 and reduce GO.[ 65 ] Similar studies on graphene–TiO2 photocatalysis using different experimental methods show improved pollutant degradation and hydrogen production.[ 66, 67, 68, 69, 70, 71, 72 ]
Yu et al. successfully synthesized RGO–CdS nanorod composite by a one‐step microwave‐assisted hydrothermal process for carrying out the photocatalytic reduction of CO2 to CH4. Their analysis revealed that the RGO–CdS nanorod junction at 0.5 wt% of RGO achieved a high production rate (2.51 μmol h−1 g−1), 10 times greater than that of pristine CdS nanorods (Figure 8 ).
Figure 8.

a) Comparison of photocatalytic CH4 production rates of G0, G0.1, G0.25, G0.5, G1.0, G2.0, N0.5, P0.5, and RGO samples under visible light irradiation. b) Transient photocurrent responses of the G0 and G0.5 samples in 0.4 m Na2SO4 aqueous solution under visible light (λ = 420 nm) irradiation. a,b) Reproduced with permission.[ 73 ] Copyright 2014, Royal Society of Chemistry.
The high production rate is due to the presence of RGO that acts as an acceptor of photogenerated electrons from CdS upon irradiation.[ 73 ] Similar metal‐free RGO‐Ss, such as Ag2CrO4–GO,[ 74 ] TiO2–S/rGO,[ 75 ] and GO/CuFe2O4,[ 76 ] have been investigated as materials that can replace expensive noble metals with carbon, and ultimately enhance the photocatalytic activity of single semiconductors.
7. Semiconductor (S)–Graphitic Carbon Nitride (C3N4) Heterojunctions
Recently, other heterojunctions composed of S–C3N4 have been widely investigated by many researchers for optimizing single semiconductor photoelectronic conversion. C3N4 is inexpensive, harmless, and has a narrow bandgap of 2.7 eV, qualifying it for consideration as a photocatalytic material for H2 production, O2 evolution, and CO2 reduction upon visible light irradiation.[ 77, 78 ]
In a combined experimental and theoretical study, Yu et al. have demonstrated enhanced photocatalytic activity for selective reduction of CO2 to CH3OH on g‐C3N4–ZnO. The lower potential photogenerated electrons from the CB of ZnO recombine at a minimal rate with the higher potential VB‐excited holes of g‐C3N4 resulting in enhanced photocurrent production as confirmed experimentally. Indeed, this g‐C3N4–ZnO photocatalyst attains 2.3 times higher photocatalytic activity than does pure g‐C3N4.[ 79 ]
Li et al. synthesized a direct Z‐scheme g‐C3N4–TiO2 heterojunction that shows improved photocatalytic activity for degradation of the organic pollutant propylene under visible light irradiation. Upon light irradiation, photoexcited electrons migrate from the TiO2 layer and recombine with holes from g‐C3N4; this favors reduction at g‐C3N4 and oxidation at the TiO2 surface. This research attempts to demonstrate that a larger specific surface area and stronger UV–vis light absorption can result in improved photocatalytic activity due to increased numbers of active sites and photogenerated carriers. By considering two samples—20%g‐C3N4–TiO2–400 and 30%g‐C3N4–TiO2–600—they showed that increased light absorption does not always lead to improved photocatalytic activity. Rather, 20%g‐C3N4–TiO2–400, which possesses a larger specific surface area and better visible light absorption, results in lower photocatalytic activity than 30%g‐C3N4–TiO2–600. Thus, in addition to large surface area and broad light spectrum absorption, better charge transfer and separation are also crucial factors for enhanced photocatalysis.[ 80 ]
CQDs incorporating carbon nitride show interesting effects and attain improved quantum efficiency. For instance, Liu et al. synthesized a metal‐free carbon nanodot–carbon nitride (C3N4) nanocomposite for photocatalytic water splitting. Such a CQDs–C3N4 hybrid is made of low‐cost and environmentally friendly materials. This device attained quantum efficiencies of 16% for wavelength λ = 420 ± 20 nm, 6.29% for λ = 580 ± 15 nm, and 4.42% for λ = 600 ± 10 nm, and an overall solar energy conversion efficiency of 2.0%.[ 81 ]
Another facile experimental method has been developed by Guo et al. to synthesize an infrared‐responsive photocatalyst—a CQD/carbon nitride nanocomposite—at 450 °C, designed to enhance photocatalytic activity. In this hybrid photocatalyst, the CQD converts infrared to visible light, whereas the carbon nitride utilizes the visible light emitted by the CQD to degrade pollutants. This composite photocatalyst degrades MO efficiently under infrared light irradiation (λ > 800 nm).[ 82 ]
Recently, our group has performed a detailed theoretical study of metal‐free CQD/carbon‐nitride hybrid systems to investigate the mechanism across the interface for isolating hydrogen from oxygen in photocatalytic water splitting.
The work functions of C3N and the CQDs were calculated to be 3.25 and 4.65 eV, respectively, so that electron flow is driven from C3N to the CQDs. The computed CQD/C3N differential charges indicate that holes collect at C3N and electrons at the CQDs. The computed absorption coefficients, as shown in Figure 9b, reveal that while bare C3N absorbs mainly short‐wavelength visible light (<600 nm) and CQD absorption extends to ≈700 nm, absorption of the CQDs/C3N composite extends to ≈900 nm.
Figure 9.

a) Differential charge distribution of the carbon quantum dot (CQD)/C3N structure. The yellow and blue regions represent electron and hole charge distributions, respectively, with an isosurface value of 0.0006 e Å−3. b) Photoabsorption spectrum of the bare C3N (red), CQD (blue), and CQD/C3N composite structures (black). c) PDOS of the CQDs/C3N hybrid. a–c) Reproduced with permission.[ 83 ] Copyright 2018, Royal Society of Chemistry.
Extended time‐dependent density functional theory (TDDFT) calculations reveal that photoexcited electrons transfer from C3N to CQD, which is in good agreement with ultrafast charge evolution results, which favor oxidation at C3N and reduction at CQD sites. This CQDs/C3N hybrid photocatalyst design enables the full use of visible and IR light to generate and distribute high energy holes and electrons on the C3N and CQDs layers. Representative works on S–g‐C3N4 photocatalyst junctions are summarized in Table 4 .[ 83 ]
Table 4.
Summary of representative S‐g‐C3N4 photocatalyst junctions reported to date
| Model/sample | Oxidation site | Reduction site | Charge‐transfer direction across the junction | Activity test/application | References |
|---|---|---|---|---|---|
| g‐C3N4/TiO2 | TiO2 | g‐C3N4 | TiO2
Interface, g‐C3N4
Interface |
Degradation of propylene and hydrogen generation, TC, degradation of diclofenac | [299, 300] |
| C3N4/BiOIO3 | BiOIO3 | C3N4 | BiOIO3
Interface, C3N4
Interface |
Photodegradation of MO, RhB | [301] |
| g‐C3N4/Bi4O7 | Bi4O7 | g‐C3N4 | Bi4O7
Interface, g‐C3N4
Interface |
Degradation of MB, phenol, RhB, and BPA | [302] |
| g‐C3N4/Bi2MoO6 | Bi2MoO6 | g‐C3N4 | Bi2MoO6
Interface, g‐C3N4
Interface |
Photodegradation of MB | [303] |
| g‐C3N4/AgFeO2 | AgFeO2 | g‐C3N4 | AgFeO2
Interface, g‐C3N4
Interface |
Acid red G (ARG) | [304] |
| g‐C3N4/Ag2WO4 | Ag2WO4 | g‐C3N4 | Ag2WO4
Interface, g‐C3N4
Interface |
Degradation of MO | [305] |
| g‐C3N4/Ag2CrO4 | Ag2CrO4 | g‐C3N4 | Ag2CrO4
Interface, g‐C3N4
Interface |
Degradation of MO | [306] |
| g‐C3N4/Bi2O3 | Bi2O3 | g‐C3N4 | Bi2O3
Interface, g‐C3N4
Interface |
Photodegradation of MB, RhB | [307] |
| g‐C3N4/BiVO4 | BiVO4 | g‐C3N4 | BiVO4
Interface, g‐C3N4
Interface |
Degradation of toluene | [308] |
| g‐C3N4/WO3 | WO3 | g‐C3N4 | WO3
Interface, g‐C3N4
Interface |
Decomposition of acetaldehyde, MB | [309, 310, 311, 312] |
| g‐C3N4/ZnO | ZnO | g‐C3N4 | ZnO Interface, g‐C3N4
Interface |
Photocatalytic CO2 conversion to fuel, CO2 reduction to CH3OH | [229, 313] |
| g‐C3N4/V2O5 | V2O5 | g‐C3N4 | V2O5
Interface, g‐C3N4
Interface |
Degradation of RhB and TC | [314] |
| g‐C3N4/Ag2CrO4 | Ag2CrO4 | g‐C3N4 | Ag2CrO4
Interface, g‐C3N4
Interface |
Photodegradation of MB, RhB, MO | [315, 316] |
| g‐C3N4/Bi12GeO20 | Bi12GeO20 | g‐C3N4 | Bi12GeO20
Interface, g‐C3N4
Interface |
Degradation of microcystin‐LR and RhB, and for reduction of aqueous Cr(VI) | [317] |
| g‐C3N4/Bi2Sn2O7 | Bi2Sn2O7 | g‐C3N4 | Bi2Sn2O7
Interface, g‐C3N4
Interface |
Degradation of MB and acid red 18 (AR 18) | [318] |
| g‐C3N4/Ag2CO3 | Ag2CO3 | g‐C3N4 | Ag2CO3
Interface, g‐C3N4
Interface |
Degradation of MO | [319] |
| g‐C3N4/BiOI | BiOI | g‐C3N4 | BiOI Interface, g‐C3N4
Interface |
Reduction of CO2 | [320] |
| g‐C3N4/Ag3PO4 | Ag3PO4 | g‐C3N4 | Ag3PO4
Interface, g‐C3N4
Interface |
CO2 conversion to fuel | [321, 322] |
| g‐C3N4/MoO3 | MoO3 | g‐C3N4 | MoO3
Interface, g‐C3N4
Interface |
Degradation of MO | [323] |
| g‐C3N4/DyVO4 | g‐C3N4 | DyVO4 | g‐C3N4
DyVO4, DyVO4
g‐C3N4
|
Degradation of RhB | [324] |
| g‐C3N4/Bi2WO6 | Bi2WO6 | g‐C3N4 | Bi2WO6
Interface, g‐C3N4
Interface |
Photoreduction of CO2 to CO | [325] |
| g‐C3N4/ZrO2 | g‐C3N4 | ZrO2 | g‐C3N4
ZrO2, ZrO2
g‐C3N4
|
Degradation of RhB | [326] |
| AgCl/g‐C3N4 | AgCl | g‐C3N4 | AgCl Interface, g‐C3N4
Interface |
H2 production | [327] |
| BiOIO3/g‐C3N4 | BiOIO3 | g‐C3N4 | BiOIO3
Interface, g‐C3N4
Interface |
Degradation of NO | [328] |
| Bi2S3/g‐C3N4 | Bi2S3 | g‐C3N4 | Bi2S3
Interface, g‐C3N4
Interface |
Photoreduction of CO2 to CO | [329] |
| MnCo2O4/g‐C3N4 | g‐C3N4 | MnCo2O4 | g‐C3N4
MnCo2O4, MnCo2O4
g‐C3N4
|
H2 production | [330] |
| WS2/g‐C3N4 | g‐C3N4 | WS2 | g‐C3N4
WS2
|
H2 production | [331] |
| g‐C3N4/SnS | g‐C3N4 | SnS | g‐C3N4
SnS, SnS g‐C3N4
|
Reduction of aqueous Cr(VI) | [332] |
| g‐C3N4/BiOBr | g‐C3N4 | BiOBr | g‐C3N4
BiOBr, BiOBr g‐C3N4
|
Oxidation of NO and reduction of CO2 | [333] |
8. Semiconductor–(RGO/Metal)–Graphitic Carbon Nitride (g‐C3N4) Heterojunctions
Recently, much effort has been devoted to the construction of all‐solid‐state Z‐scheme semiconductor–metal–g‐C3N4 and semiconductor–RGO–g‐C3N4 heterojunctions. These designs aim to minimize recombination and lattice mismatch by including metal and RGO mediators for efficient optoelectronic conversion.
Peng et al. synthesized a CdS/Au/g‐C3N4 ternary heterojunction by a facile two‐step photoreduction method; this device exhibited enhanced visible light photocatalytic performance. When the CdS/Au/g‐C3N4 heterojunction was irradiated, photogenerated electrons from CdS and holes from g‐C3N4 transferred to the intermediate metal; this process favored oxidation and reduction separately at CdS and g‐C3N4, respectively. Experimentally, the ternary CdS/Au/g‐C3N4 heterojunction exhibited better photocatalytic activity than did CdS/g‐C3N4. This may be due to the effect of the smaller sized CdS nanoparticles in the ternary than in the binary heterojunction, resulting in enhanced charge separation of photogenerated electron–hole pairs. Another possibility is that Z‐scheme formation in CdS/Au/g‐C3N4 imparts greater redox ability to excited charges than in the binary Au/g‐C3N4.[ 84 ]
Lately, RGO has been investigated as a mediator in semiconductor–g‐C3N4 heterojunctions. Wu et al. demonstrated an all‐solid‐state g‐C3N4–RGO–TiO2 Z‐scheme device that performs enhanced photocatalytic degradation of methylene blue. Upon light illumination photogenerated electrons from TiO2 and holes from g‐C3N4 collect in RGO, enabling oxidation at TiO2 and reduction at g‐C3N4. This indirect g‐C3N4–RGO–TiO2 Z‐scheme device exhibited a maximal degradation rate of 0.0137 min−1—about 4.7 and 3.2 times greater than in either pure g‐C3N4 (0.0029 min−1) or direct Z‐scheme g‐C3N4–TiO2 (0.0043 min−1), respectively. The improved charge transfer and separation due to incorporating RGO in this nanoheterojunction results in an enhanced reduction of oxygen at g‐C3N4 and oxidation of hydroxyl radicals at TiO2.[ 85 ]
Marchal et al. produced Au/TiO2‐g‐C3N4 nanocomposites with very low amounts of sacrificial agents present to split water for hydrogen production. When this heterojunction was exposed to light, photogenerated electrons from TiO2 and g‐C3N4 migrated to and deposited in Au nanoparticles, favoring the production of H2. High energy holes in the TiO2 and g‐C3N4 layers oxidize H2O and produce oxygen. This composite photocatalyst yields high H2 production (350 μmol h−1 g−1 catalyst) using minimal amounts of sacrificial agent (≤1 vol%); its performance exceeds that of either binary Au/TiO2 or Au/g‐C3N4 under solar and visible light irradiation. This enhanced performance is due to the homogeneous deposition of Au NPs onto both semiconductors, the SPR of the Au NPs, and the perfect VB and CB alignment forming a Type‐II heterojunction; these factors facilitate the charge transfer and charge separation that induces photogenerated electrons to transfer from the CB of g‐C3N4 to the CB of TiO2.[ 86 ] Recently, an investigation on ternary rGO@g‐C3N4/ZnO by Saeed et al.[ 87 ] revealed increased photocatalytic MB degradation of 91.5% under visible light. The experimental finding showed an improved ability to harvest visible light absorption due to the addition of rGO and g‐C3N4 to ZnO by reducing the charge recombination. Representative works on S–(RGO/metal)–g‐(C3N4) are summarized in Table 5 .
Table 5.
Summary of representative S–(RGO/metal)–g‐(C3N4) photocatalyst junction publications
| Model/sample | Oxidation site | Reduction site | Mediator | Charge‐transfer direction across the junction | Activity test/application | References |
|---|---|---|---|---|---|---|
| g‐C3N4/CdS@rGO | CdS | g‐C3N4 | RGO | CdS RGO, g‐C3N4
RGO |
CO2 reduction | [334] |
| g‐C3N4/GO/AgBr | AgBr | g‐C3N4 | GO | Ag BrGO, g‐C3N4
GO |
Degradation of RhB | [335] |
| g‐C3N4/Au/CdS | CdS | g‐C3N4 | Au | CdS Au, g‐C3N4
Au |
Degradation of RhB, H2 production | [84, 336] |
| g‐C3N4/GO/TiO2 | TiO2 | g‐C3N4 | GO | TiO2
GO, g‐C3N4
GO |
Degradation of MB | [85] |
| g‐C3N4/Ag/BiVO4 | BiVO4 | g‐C3N4 | Ag | BiVO4
Ag, g‐C3N4
Ag |
Decomposition of TC | [337] |
| g‐C3N4/RGO/Bi2WO6 | Bi2WO6 | g‐C3N4 | RGO | Bi2WO6
RGO, g‐C3N4
RGO |
Degradation of 2,4,6‐trichlorophenol (TCP) | [338] |
| g‐C3N4/RGO /Bi2MoO6 | Bi2MoO6 | g‐C3N4 | RGO | Bi2MoO6
RGO, g‐C3N4
RGO |
Degradation of RhB | [339] |
| g‐C3N4/RGO/CdS | CdS | g‐C3N4 | RGO | CdS RGO, g‐C3N4
RGO |
H2 generation and degradation of atrazine | [340] |
| g‐C3N4/BiOI/RGO | g‐C3N4 | BiOI | RGO | g‐C3N4
RGO, BiOI RGO |
CO2 reduction | [341] |
| Co3O4–rGO–gC3N4 | Co3O4 | g‐C3N4 | RGO | Co3O4
RGO, g‐C3N4
RGO |
H2 generation | [342] |
| g‐C3N4/RGO/NiFe2O4 | NiFe2O4 | g‐C3N4 | RGO | NiFe2O4
RGO, g‐C3N4
RGO |
Degradation of MO | [343] |
| g‐C3N4/Cu/Cu2O | g‐C3N4 | Cu2O | Cu | g‐C3N4
Cu, Cu2O Cu |
Degradation of MO and phenol | [344] |
| g‐C3N4/Ag/MoS2 | MoS2 | g‐C3N4 | Ag | g‐C3N4
Ag, Cu2OAg, Ag MoS2
|
Degradation of RhB | [345] |
| g‐C3N4/Au/CdZnS | CdZnS | g‐C3N4 | Au | CdZnS Au, g‐C3N4
Au |
H2 generation | [346] |
| g‐C3N4/Ag /Ag3VO4 | Ag3VO4 | g‐C3N4 | Ag | Ag3VO4
Au, g‐C3N4
Au |
Degradation of RhB | [347] |
| g‐C3N4–Ag–AgVO3 | AgVO3 | g‐C3N4 | Ag | AgVO3
Ag, g‐C3N4
Ag |
Degradation of RhB and bacterial inactivation | [348] |
| g‐C3N4/Ag/Ag3PO4 | Ag3PO4 | g‐C3N4 | Ag | Ag3PO4
Ag, g‐C3N4
Ag |
Degradation of RhB | [349] |
| g‐C3N4–Bi–BiOCl | BiOCl | g‐C3N4 | Bi | BiOCl Bi, g‐C3N4
Bi |
Degradation of RhB and Cr(VI) reduction | [350] |
| g‐C3N4/Ag/Ag2CO3 | Ag2CO3 | g‐C3N4 | Ag | Ag2CO3
Ag, g‐C3N4
Ag |
Degradation of RhB | [351] |
| g‐C3N4/Au/ZnIn2S4 | ZnIn2S4 | g‐C3N4 | Au | ZnIn2S4
Au, g‐C3N4
Au |
Nitric oxide removal and carbon dioxide conversion | [352] |
| g‐C3N4/MoS2(Ni, Co) | MoS2 | MoS2 | – | g‐C3N4
MoS2, g‐C3N4
MoS2
|
H2 generation | [353] |
9. Conclusions and Outlook
In this critical review, we have first presented an overview and introduction of photocatalysis using typical bare semiconductor and semiconductor‐based heterojunction photocatalysts, and then thoroughly reviewed current state‐of‐the‐art heterojunction photocatalytic devices including semiconductors with graphene, CQDs, and graphitic carbon nitride. The review's primary focus—on the steering of charge kinetics, construction principles, and mechanisms of heterojunction photocatalysis—is presented as an elaborative tutorial on the advantages and disadvantages of Schottky/ohmic and plasmonic junctions. Even though our review primarily focuses on theoretical modeling principles and recent progress in charge transfer and separation proposals for enhanced heterojunction photocatalysis, it also combines experimental observations in parallel for better understanding and inspiration.
Although photocatalysts hold promise for enabling a sustainable future world, there are several roadblocks preventing their use in practical applications. Notable factors that can hinder the achievement of highly efficient photocatalysis include: 1) failure to size the photocatalyst bandgap small enough so that the energies needed to convert photons into e–h pairs match solar spectrum irradiance; 2) an excessively high recombination rate; 3) insufficiently large surface area; 4) insufficiently high chemical stability; 5) suboptimum band positions of the photocatalyst; 6) insufficiently low cost.
To alleviate these shortcomings, a number of well‐known designs have been proposed as holding promise; apart from ones utilizing a single semiconductor—these designs either incorporate the interfacing of a semiconductor with metal, semiconductor–semiconductor, semiconductor–graphene, semiconductor–graphitic carbon nitride, or use metal and RGO as a mediator in the heterojunction structure. Controlling the formation and making use of the advantages of semiconductor–metal designs—with emphasis on their Schottky barrier/ohmic contacts and plasmonic effects—have been the main areas of focus in the past few years. Despite great effort, inadequate charge separation and loss of energy during migration of charge carriers from semiconductor to metal greatly quench the redox ability of these photocatalysts. Recently, a conventional Z‐scheme that uses acceptor and donor mediators and an all‐solid‐state Z‐scheme that uses metals as a mediator have been investigated, with no emphasis to date on the selective steering of charges. In general, Z‐scheme designs mainly aim to minimize both the recombination rate and lattice mismatch at the p–n junction and improve charge transfer dynamics. Recently, a few promising experimental and theoretical simulation studies have been undertaken to enhance the selective steering of charges in some all‐solid‐state Z‐scheme designs to increase the efficiency of charge separation for improved optoelectronic conversion.
Also recently, heterojunction photocatalysis studies have been extended to consider semiconductor–RGO–graphene, graphene–graphitic carbon nitride, and graphene–graphitic carbon nitride designs for better optimization of metal‐free, inexpensive, and environmentally harmless heterojunctions. Such heterojunctions mainly aim to maximize quantum efficiency by increasing the surface area of the photocatalyst, broadening the range of light absorption, and increasing the rate of charge transfer across the interface. Although few studies on the incorporation of CQDs with carbon nitride have been performed, the results reveal interesting effects and attain enhanced quantum efficiency, identifying this design as an emerging promising candidate for heterojunction photocatalysis.
Despite some success in heterojunction photocatalysis design and tuning charge kinetics dynamics, this area of development still faces many challenges. First, the interplay of dynamics at the interface is not sufficiently considered; this process can quench photocatalyst performance. Primarily, the connecting of the energy‐dependent selective steering of charges that facilitates charge migration to the ultimate goal of efficient charge separation has not received enough attention. Another challenge is the failure to apply experimental and theoretical principles at the interface to take proper advantage of the properties of Schottky/ohmic and plasmonic junctions. Especially, insufficient effort has been made at applying the merits of a metal's SPR effect so as to make use of its dual role. Even though experimental and theoretical study methods show advances in studying dynamical properties at surfaces and interfaces, they are limited. Most studies do not present refined charge kinetics dynamics at the interface, especially those related to charge transfer and high energy e–h pair separation; these areas need much more work in the future. In general, to further insight into the area of semiconductor based heterojunctions, the following points can be considered. 1) Less lattice mismatch at the interface with favorable band alignment between different combining layers is crucial. In addition, the area should also focus on an energy‐dependent Z‐scheme p–m–n and n–m–p heterojunction to steer charges selectively across the interface to achieve good charge separation; and 2) In synthesizing metal‐free photocatalysts, combining g‐C3N4 with large bandgap semiconductors is a promising strategy to extend its light absorption region and increase its surface area. In addition, as experts and reviewers of this area, we grasp that the proportional composition of materials at the interface, their morphology, and crystal structures have not been properly considered, despite the fact that these properties greatly affect the photocatalytic activity of the photocatalyst.
Conflict of Interest
The authors declare no conflict of interest.
Biographies
Mesfin Eshete is an assistant professor of physical chemistry at Addis Ababa Science and Technology University in the School of Applied Sciences, Department of Industrial Chemistry. He honored his Doctor of Philosophy in physical chemistry (Ph.D.) from the University of Science and Technology of China (China) in 2020. His main research interests are structural and electronic properties of novel materials, electron dynamics at the surface and interface in photocatalytic systems (composition structures with semiconductor, metal, RGO, graphene), and designing of novel heterojunctions in energy conversion for application of photocatalysis, catalysis, pervoskites.

Jun Jiang is a professor at the School of Chemistry and Materials Science, University of Science and Technology of China (USTC). He received a B.S. degree in theoretical physics in 2000 at Wuhan University, China, a Ph.D. degree in theoretical chemistry under the tutelage of Prof. Yi Luo in 2007 at the Royal Institute of Technology, Sweden, a Ph.D. degree in solid state physics under the tutelage of Prof. Wei Lu in 2008 at Shanghai Institute of Technical Physics, Chinese Academy of Science. From 2008 to 2011, he worked as a post doc at the Royal Institute of Technology, Sweden, and the University of California Irvine under the tutelage of Prof. Shaul Mukamel. He joined the University of Science and Technology of China in December 2011 as a professor of physical chemistry.

References
- 1. Owusu P. A., Asumadu-Sarkodie S., Cogent Eng. 2016, 3, 1167990. [Google Scholar]
- 2. Moniz S. J. A., Shevlin S. A., Martin D. J., Guo Z.-X., Tang J., Energy Environ. Sci. 2015, 8, 731. [Google Scholar]
- 3. Li S., Xu W., Meng L., Tian W., Li L., Small Sci. 2022, 2, 2100112. [Google Scholar]
- 4. Yuan L., Han C., Yang M.-Q., Xu Y.-J., Int. Rev. Phys. Chem. 2016, 35, 1. [Google Scholar]
- 5. Fujishima A., Honda K., Nature 1972, 238, 37. [DOI] [PubMed] [Google Scholar]
- 6. Musa A. O., Akomolafe T., Carter M. J., Sol. Energy Mater. Sol. Cells 1998, 51, 305. [Google Scholar]
- 7. Su Y., Li H., Ma H., Robertson J., Nathan A., ACS Appl. Mater. Interfaces 2017, 9, 8100. [DOI] [PubMed] [Google Scholar]
- 8. Wang X., Liao M., Zhong Y., Zheng J. Y., Tian W., Zhai T., Zhi C., Ma Y., Yao J., Bando Y., Golberg D., Adv. Mater. 2012, 24, 3421. [DOI] [PubMed] [Google Scholar]
- 9. Li H., Shi G., Wang H., Zhang Q., Li Y., J. Mater. Chem. A 2014, 2, 11305. [Google Scholar]
- 10. Yang Y., Xie R., Liu Y., Li J., Li W., Catalysts 2015, 5, 2024. [Google Scholar]
- 11. Kong Y., Sun H., Fan W., Wang L., Zhao H., Zhao X., Yuan S., J. Mater. Chem. A 2017, 7, 15201. [Google Scholar]
- 12. Bai S., Jiang J., Zhang Q., Xiong Y., Chem. Soc. Rev. 2015, 44, 2893. [DOI] [PubMed] [Google Scholar]
- 13. Guan D., Zhou W., Shao Z., Small Sci. 2021, 1, 2100030. [Google Scholar]
- 14. Wang Z., Li C., Domen K., Chem. Soc. Rev. 2019, 48, 2109. [DOI] [PubMed] [Google Scholar]
- 15. Reza Gholipour M., Dinh C.-T., Béland F., Do T.-O., Nanoscale 2015, 7, 8187. [DOI] [PubMed] [Google Scholar]
- 16. Bao L., Huang L., Guo H., Gao H.-J., Phys. Chem. Chem. Phys. 2022, 24, 9082. [DOI] [PubMed] [Google Scholar]
- 17. Liu C., Chen H., Wang S., Liu Q., Jiang Y.-G., Zhang D. W., Liu M., Zhou P., Nat. Nanotechnol. 2020, 15, 545. [DOI] [PubMed] [Google Scholar]
- 18. Novoselov K. S., Jiang D., Schedin F., Booth T. J., Khotkevich V. V., Morozov S. V., Geim A. K., Proc. Natl. Acad. Sci. USA 2005, 102, 10451. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 19. Akinwande D., Petrone N., Hone J., Nat. Commun. 2014, 5, 5678. [DOI] [PubMed] [Google Scholar]
- 20. Hu X., Liu K., Cai Y., Zang S.-Q., Zhai T., Small Sci. 2022, 2. 2200008. [Google Scholar]
- 21. Wu J., Ma H., Yin P., Ge Y., Zhang Y., Li L., Zhang H., Lin H., Small Sci. 2021, 1. 2000053. [Google Scholar]
- 22. Cheng Z., Zhao T., Zeng H., Small Sci. 2021, 2. 2100051. [Google Scholar]
- 23. Zhang H.-Z., Wu W.-J., Zhou L., Wu Z., Zhu J., Small Sci. 2021, 2. 2100033. [Google Scholar]
- 24. Meng C., Das P., Shi X., Fu Q., Müllen K., Wu Z.-S., Small Sci. 2021, 1. 2000076. [Google Scholar]
- 25. Chen Y., Crittenden J. C., Hackney S., Sutter L., Hand D. W., Environ. Sci. Technol. 2005, 39. 1201. [DOI] [PubMed] [Google Scholar]
- 26. Marschall R., Adv. Funct. Mater. 2014, 24. 2421. [Google Scholar]
- 27. Ahmed S. N., Haider W., Nanotechnology 2018, 29. 342001. [DOI] [PubMed] [Google Scholar]
- 28. Wang Y., Wang Q., Zhan X., Wang F., Safdar M., He J., Nanoscale 2013, 5. 8326. [DOI] [PubMed] [Google Scholar]
- 29. Ding R. C., Fan Y. Z., Wang G. S., ChemistrySelect 2018, 3. 1682. [Google Scholar]
- 30. Raebiger H., Lany S., Zunger A., Phys. Rev. B 2007, 76. 045209. [DOI] [PubMed] [Google Scholar]
- 31. Ghijsen J., Tjeng L. H., van Elp J., Eskes H., Westerink J., Sawatzky G. A., Czyzyk M. T., Phys. Rev. B 1988, 38. 11322. [DOI] [PubMed] [Google Scholar]
- 32. Ruiz E., Alvarez S., Alemany P., Evarestov R. A., Phys. Rev. B 1997, 56. 7189. [Google Scholar]
- 33. Nan F., Li P., Li J., Cai T., Ju S., Fang L., J. Phys. Chem. C 2018, 122. 15055. [Google Scholar]
- 34. Wang H., Zhang L., Chen Z., Hu J., Li S., Wang Z., Liu J., Wang X., Chem. Soc. Rev. 2014, 43, 5234. [DOI] [PubMed] [Google Scholar]
- 35. Huang Z.-F., Pan L., Zou J.-J., Zhang X., Wang L., Nanoscale 2014, 6, 14044. [DOI] [PubMed] [Google Scholar]
- 36. Wang L., Ge J., Wang A., Deng M., Wang X., Bai S., Li R., Jiang J., Zhang Q., Luo Y., Xiong Y., Angew. Chem., Int. Ed. 2014, 53, 5107. [DOI] [PubMed] [Google Scholar]
- 37. Li R., Zhang F., Wang D., Yang J., Li M., Zhu J., Zhou X., Han H., Li C., Nat. Commun. 2013, 4, 1432. [DOI] [PubMed] [Google Scholar]
- 38. Wang J.-C., Zhang L., Fang W.-X., Ren J., Li Y.-Y., Yao H.-C., Wang J.-S., Li Z.-J., ACS Appl. Mater. Interfaces 2015, 7, 8631. [DOI] [PubMed] [Google Scholar]
- 39. Wu J.-J., Tseng C.-H., Appl. Catal., B 2006, 66, 51. [Google Scholar]
- 40. Height M. J., Pratsinis S. E., Mekasuwandumrong O., Praserthdam P., Appl. Catal., B 2006, 63, 305. [Google Scholar]
- 41. Yan F., Wang Y., Zhang J., Lin Z., Zheng J., Huang F., ChemSusChem 2014, 7, 101. [DOI] [PubMed] [Google Scholar]
- 42. Bian Z., Tachikawa T., Zhang P., Fujitsuka M., Majima T., J. Am. Chem. Soc. 2014, 136, 458. [DOI] [PubMed] [Google Scholar]
- 43. Jiang D., Wang W., Sun S., Zhang L., Zheng Y., ACS Catal. 2015, 5, 613. [Google Scholar]
- 44. Wang Y., Suzuki H., Xie J., Tomita O., Martin D. J., Higashi M., Kong D., Abe R., Tang J., Chem. Rev. 2018, 118, 5201. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 45. Xu C., Ravi Anusuyadevi P., Aymonier C., Luque R., Marre S., Chem. Soc. Rev. 2019, 48, 3868. [DOI] [PubMed] [Google Scholar]
- 46. Kubacka A., Fernández-García M., Colón G., Chem. Rev. 2012, 112, 1555. [DOI] [PubMed] [Google Scholar]
- 47. Zhou P., Yu J., Jaroniec M., Adv. Mater. 2014, 26, 4920. [DOI] [PubMed] [Google Scholar]
- 48. Xia X., Song M., Wang H., Zhang X., Sui N., Zhang Q., Colvin V. L., Yu W. W., Nanoscale 2019, 11, 11071. [DOI] [PubMed] [Google Scholar]
- 49. Fu C.-F., Wu X., Yang J., Adv. Mater. 2018, 30, 1802106. [DOI] [PubMed] [Google Scholar]
- 50. Wang S., Yun J.-H., Luo B., Butburee T., Peerakiatkhajohn P., Thaweesak S., Xiao M., Wang L., J. Mater. Sci. Technol. 2017, 33, 1. [Google Scholar]
- 51. Li Y., Li L., Gong Y., Bai S., Ju H., Wang C., Xu Q., Zhu J., Jiang J., Xiong Y., Nano Res. 2015, 8, 3621. [Google Scholar]
- 52. Zhuang T.-T., Liu Y., Sun M., Jiang S.-L., Zhang M.-W., Wang X.-C., Zhang Q., Jiang J., Yu S.-H., Angew. Chem., Int. Ed. 2015, 54, 11495. [DOI] [PubMed] [Google Scholar]
- 53. Li S., Zhao Q., Wang D., Xie T., RSC Adv. 2016, 6, 66783. [Google Scholar]
- 54. Eshete M., Yang L., Sharman E., Li X., Wang X., Zhang G., Jiang J., J. Phys. Chem. Lett. 2020, 11, 3313. [DOI] [PubMed] [Google Scholar]
- 55. Li X., Eshete M., Li X., Xie T., Zhang G., Xie L., Jia C., Luo Y., Jiang J., J. Mater. Chem. A 2019, 7, 15036. [Google Scholar]
- 56. Ye F., Su Y., Quan X., Chen S., Yu H., Li H., Appl. Catal., B 2019, 244, 347. [Google Scholar]
- 57. Wan X., Gao Y., Eshete M., Hu M., Pan R., Nano Energy 2022, 98, 107217. [Google Scholar]
- 58. Eshete M., Li X., Xie T., Jiang J., Zhang G., J. Phys. Chem. Lett. 2019, 10, 4317. [DOI] [PubMed] [Google Scholar]
- 59. Zhang H., Lv X., Li Y., Wang Y., Li J., ACS Nano 2010, 4, 380. [DOI] [PubMed] [Google Scholar]
- 60. Bekyarova E., Itkis M. E., Ramesh P., Berger C., Sprinkle M., de Heer W. A., Haddon R. C., J. Am. Chem. Soc. 2009, 131, 1336. [DOI] [PubMed] [Google Scholar]
- 61. Nair R. R., Blake P., Grigorenko A. N., Novoselov K. S., Booth T. J., Stauber T., Peres N. M. R., Geim A. K., Science 2008, 320, 1308. [DOI] [PubMed] [Google Scholar]
- 62. Inoshita T., Saito S., Hosono H., Small Sci. 2021, 1, 2100020. [Google Scholar]
- 63. Komeily-Nia Z., Qu L.-T., Li J.-L., Small Sci. 2020, 1, 2000026. [Google Scholar]
- 64. Gong H., Chen S., Ning R., Chang T.-H., Tok J. B. H., Bao Z., Small Sci. 2021, 1, 2000067. [Google Scholar]
- 65. Williams G., Seger B., Kamat P. V., ACS Nano 2008, 2, 1487. [DOI] [PubMed] [Google Scholar]
- 66. Lai C., Wang M.-M., Zeng G.-M., Liu Y.-G., Huang D.-L., Zhang C., Wang R.-Z., Xu P., Cheng M., Huang C., Wu H.-P., Qin L., Appl. Surf. Sci. 2016, 390, 368. [Google Scholar]
- 67. Yang Y., Xu L., Wang H., Wang W., Zhang L., Mater. Des. 2016, 108, 632. [Google Scholar]
- 68. Rong X., Qiu F., Zhang C., Fu L., Wang Y., Yang D., Ceram. Int. 2015, 41, 2502. [Google Scholar]
- 69. Trapalis A., Todorova N., Giannakopoulou T., Boukos N., Speliotis T., Dimotikali D., Yu J., Appl. Catal., B 2016, 180, 637. [Google Scholar]
- 70. Khalid N. R., Ahmed E., Hong Z., Sana L., Ahmed M., Curr. Appl. Phys. 2013, 13, 659. [Google Scholar]
- 71. Guo H., Jiang N., Wang H., Shang K., Lu N., Li J., Wu Y., Appl. Catal., B 2019, 248, 552. [Google Scholar]
- 72. Xiang Q., Yu J., Jaroniec M., Nanoscale 2011, 3, 3670. [DOI] [PubMed] [Google Scholar]
- 73. Yu J., Jin J., Cheng B., Jaroniec M., J. Mater. Chem. A 2014, 2, 3407. [Google Scholar]
- 74. Xu D., Cheng B., Cao S., Yu J., Appl. Catal., B 2015, 164, 380. [Google Scholar]
- 75. Wang W., Wang Z., Liu J., Luo Z., Suib S. L., He P., Ding G., Zhang Z., Sun L., Sci. Rep. 2017, 7, 46610. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 76. Yadav P., Surolia P. K., Vaya D., Mater. Today:. Proc. 2021, 43, 2949. [Google Scholar]
- 77. Ong W.-J., Tan L.-L., Ng Y. H., Yong S.-T., Chai S.-P., Chem. Rev. 2016, 116, 7159. [DOI] [PubMed] [Google Scholar]
- 78. Prasad C., Tang H., Bahadur I., J. Mole. Liq. 2019, 281, 634. [Google Scholar]
- 79. Yu W., Xu D., Peng T., J. Mater. Chem. A 2015, 3, 19936. [Google Scholar]
- 80. Li J., Zhang M., Li X., Li Q., Yang J., Appl. Catal., B 2017, 212, 106. [Google Scholar]
- 81. Liu J., Liu Y., Liu N., Han Y., Zhang X., Huang H., Science 2015, 347, 970. [DOI] [PubMed] [Google Scholar]
- 82. Guo Y., Yao P., Zhu D., Gu C., J. Mater. Chem. A 2015, 3, 13189. [Google Scholar]
- 83. Wang X., Jiang X., Sharman E., Yang L., Li X., Zhang G., Zhao J., Luo Y., Jiang J., J. Mater. Chem. A 2019, 7, 6143. [Google Scholar]
- 84. Peng D., Wang H., Yu K., Chang Y., Ma X., Dong S., RSC Adv. 2016, 6, 77760. [Google Scholar]
- 85. Wu F., Li X., Liu W., Zhang S., Appl. Surf. Sci. 2017, 405, 60. [Google Scholar]
- 86. Marchal C., Cottineau T., Méndez-Medrano M. G., Colbeau-Justin C., Caps V., Keller V., Adv. Energy Mater. 2018, 8, 1702142. [Google Scholar]
- 87. Saeed U., Jilani A., Iqbal J., Al-Turaif H., Inorg. Chem. Commun. 2022, 142, 109623. [Google Scholar]
- 88. Xiao M., Lu Y., Li Y., Song H., Zhu L., Ye Z., RSC Adv. 2014, 4, 34649. [Google Scholar]
- 89. Zhang Z., Shao C., Li X., Wang C., Zhang M., Liu Y., ACS Appl. Mater. Interfaces 2010, 2, 2915. [DOI] [PubMed] [Google Scholar]
- 90. Xie Q., Guo H., Zhang X., Lu A., Zeng D., Chen Y., Peng D.-L., RSC Adv. 2013, 3, 24430. [Google Scholar]
- 91. Luo C., Li D., Wu W., Zhang Y., Pan C., RSC Adv. 2014, 4, 3090. [Google Scholar]
- 92. Ding M., Yang H., Yan T., Wang C., Deng X., Zhang S., Huang J., Shao M., Xu X., Nanoscale Res. Lett. 2018, 13, 260. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 93. Sherly E. D., Vijaya J. J., Kennedy L. J., Meenakshisundaram A., Lavanya M., Korean J. Chem. Eng. 2016, 33, 1431. [Google Scholar]
- 94. Shifu C., Sujuan Z., Wei L., Wei Z., J. Hazard. Mater. 2008, 155, 320. [DOI] [PubMed] [Google Scholar]
- 95. Wang M., Hu Y., Han J., Guo R., Xiong H., Yin Y., J. Mater. Chem. A 2015, 3, 20727. [Google Scholar]
- 96. Uddin M. T., Nicolas Y., Olivier C., Jaegermann W., Rockstroh N., Junge H., Toupance T., Phys. Chem. Chem. Phys. 2017, 19, 19279. [DOI] [PubMed] [Google Scholar]
- 97. Babu B., Harish V. V. N., Shim J., Reddy C. V., J. Mater. Sci.: Mater. Electron. 2018, 29, 16988. [Google Scholar]
- 98. Yang L., Luo S., Li Y., Xiao Y., Kang Q., Cai Q., Environ. Sci. Technol. 2010, 44, 7641. [DOI] [PubMed] [Google Scholar]
- 99. Bessekhouad Y., Robert D., Weber J. V., Catal. Today 2005, 101, 315. [Google Scholar]
- 100. Zhang J., Zhu H., Zheng S., Pan F., Wang T., ACS Appl. Mater. Interfaces 2009, 1, 2111. [DOI] [PubMed] [Google Scholar]
- 101. Wang Y., Zhang Y.-N., Zhao G., Tian H., Shi H., Zhou T., ACS Appl. Mater. Interfaces 2012, 4, 3965. [DOI] [PubMed] [Google Scholar]
- 102. Bharad P. A., Nikam A. V., Thomas F., Gopinath C. S., ChemistrySelect 2018, 3, 12022. [Google Scholar]
- 103. Lalitha K., Sadanandam G., Kumari V. D., Subrahmanyam M., Sreedhar B., Hebalkar N. Y., J. Phys. Chem. C 2010, 114, 22181. [Google Scholar]
- 104. Li G., Huang J., Chen J., Deng Z., Huang Q., Liu Z., Guo W., Cao R., ACS Omega 2019, 4, 3392. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 105. Pham V. V., Bui D. P., Tran H. H., Cao M. T., Nguyen T. K., Kim Y. S., Le V. H., RSC Adv. 2018, 8, 12420. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 106. Abdullah H., Kuo D.-H., Chen Y.-H., J. Mater. Sci. 2016, 51, 8209. [Google Scholar]
- 107. Wang H., Liu N., Lu J., Yao S., Jiang S., Zhang W., Chem. Res. Chin. Univ. 2015, 31, 846. [Google Scholar]
- 108. Xinkun L., Guo P., Li R., Liu J., Huang M., Russ. J. Phys. Chem. A 2019, 93, 515. [Google Scholar]
- 109. Yu L., Huang Y., Xiao G., Li D., J. Mater. Chem. A 2013, 1, 9637. [Google Scholar]
- 110. Vimal Michael R. J., Theerthagiri J., Madhavan J., Umapathy M. J., Manoharan P. T., RSC Adv. 2015, 5, 30175. [Google Scholar]
- 111. Wang L., Wang W., Chen Y., Yao L., Zhao X., Shi H., Cao M., Liang Y., ACS Appl. Mater. Interfaces 2018, 10, 11652. [DOI] [PubMed] [Google Scholar]
- 112. Wei X., Pan J., Wang S., Mei J., Zheng Y., Cui C., Li C., J. Mater. Sci.: Mater. Electron. 2017, 28, 14079. [Google Scholar]
- 113. Zhu L., Li H., Liu Z., Xia P., Xie Y., Xiong D., J. Phys. Chem. C 2018, 122, 9531. [Google Scholar]
- 114. Jung S., Yong K., Chem. Commun. 2011, 47, 2643. [DOI] [PubMed] [Google Scholar]
- 115. Prabhu Y. T., Navakoteswara Rao V., Shankar M. V., Sreedhar B., Pal U., New J. Chem. 2019, 43, 6794. [Google Scholar]
- 116. Malwal D., Gopinath P., ChemistrySelect 2017, 2, 4866. [Google Scholar]
- 117. Anu A., Abdul Khadar M., SN Appl. Sci. 2019, 1, 1057. [Google Scholar]
- 118. Li D., Gao S., Wang J., Li L., Yu Q., Jiao S., Zhang Y., Wang D., Guo F., Zhao L., J. Mater. Sci.: Mater. Electron. 2016, 27, 8753. [Google Scholar]
- 119. Rajesh Kumar M., Murugadoss G., Pirogov A. N., J. Mater. Sci.: Mater. Electron. 2018, 29, 13508. [Google Scholar]
- 120. Wu S.-C., Tan C.-S., Huang M. H., Adv. Funct. Mater. 2017, 27, 1604635. [Google Scholar]
- 121. Deo M., Shinde D., Yengantiwar A., Jog J., Hannoyer B., Sauvage X., More M., Ogale S., J. Mater. Chem. 2012, 22, 17055. [Google Scholar]
- 122. Wang Y., Li S., Shi H., Yu K., Nanoscale 2012, 4, 7817. [DOI] [PubMed] [Google Scholar]
- 123. Zou X., Fan H., Tian Y., Yan S., CrystEngComm 2014, 16, 1149. [Google Scholar]
- 124. Jiang T., Xie T., Chen L., Fu Z., Wang D., Nanoscale 2013, 5, 2938. [DOI] [PubMed] [Google Scholar]
- 125. Basu M., Garg N., Ganguli A. K., J. Mater. Chem. A 2014, 2, 7517. [Google Scholar]
- 126. Chandra M., Bhunia K., Pradhan D., Inorg. Chem. 2018, 57, 4524. [DOI] [PubMed] [Google Scholar]
- 127. Dong Y., Chen S.-Y., Lu Y., Xiao Y.-X., Hu J., Wu S.-M., Deng Z., Tian G., Chang G.-G., Li J., Lenaerts S., Janiak C., Yang X.-Y., Su B.-L., Chem. Asian J. 2018, 13, 1609. [DOI] [PubMed] [Google Scholar]
- 128. Vamvasakis I., Trapali A., Miao J., Liu B., Armatas G. S., Inorg. Chem. Front. 2017, 4, 433. [Google Scholar]
- 129. Yang X., Lu G., Wang B., Wang T., Wang Y., RSC Adv. 2019, 9, 25142. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 130. Chen Y., Qin Z., Wang X., Guo X., Guo L., RSC Adv. 2015, 5, 18159. [Google Scholar]
- 131. Guo K., Chen X., Han J., Liu Z., J. Sol-Gel Sci. Technol. 2014, 72, 92. [Google Scholar]
- 132. Sun Z., Yue Q., Li J., Xu J., Zheng H., Du P., J. Mater. Chem. A 2015, 3, 10243. [Google Scholar]
- 133. Yue X., Yi S., Wang R., Zhang Z., Qiu S., Nanoscale 2016, 8, 17516. [DOI] [PubMed] [Google Scholar]
- 134. Sarkar D., Ghosh C. K., Mukherjee S., Chattopadhyay K. K., ACS Appl. Mater. Interfaces 2013, 5, 331. [DOI] [PubMed] [Google Scholar]
- 135. Ma S., Xue J., Zhou Y., Zhang Z., J. Mater. Chem. A 2014, 2, 7272. [Google Scholar]
- 136. Sinha A. K., Manna P. K., Pradhan M., Mondal C., Yusuf S. M., Pal T., RSC Adv. 2014, 4, 208. [Google Scholar]
- 137. Kar A., Sain S., Rossouw D., Knappett B. R., Pradhan S. K., Wheatley A. E. H., Nanoscale 2016, 8, 2727. [DOI] [PubMed] [Google Scholar]
- 138. Harish S., Archana J., Navaneethan M., Silambarasan A., Nisha K. D., Ponnusamy S., Muthamizhchelvan C., Ikeda H., Aswal D. K., Hayakawa Y., RSC Adv. 2016, 6, 89721. [Google Scholar]
- 139. Jayswal S., Moirangthem R. S., New J. Chem. 2018, 42, 13689. [Google Scholar]
- 140. Liang N., Wang M., Jin L., Huang S., Chen W., Xu M., He Q., Zai J., Fang N., Qian X., ACS Appl. Mater. Interfaces 2014, 6, 11698. [DOI] [PubMed] [Google Scholar]
- 141. Liu C.-M., Liu J.-W., Zhang G.-Y., Zhang J.-B., Wu Q.-S., Xu Y.-Y., Sun Y.-Q., RSC Adv. 2015, 5, 32333. [Google Scholar]
- 142. Long M., Cai W., Cai J., Zhou B., Chai X., Wu Y., J. Phys. Chem. B 2006, 110, 20211. [DOI] [PubMed] [Google Scholar]
- 143. Dang X., Zhang X., Dong X., Ruan W., Ma H., Xue M., RSC Adv. 2014, 4, 54655. [Google Scholar]
- 144. Han M., Sun T., Tan P. Y., Chen X., Tan O. K., Tse M. S., RSC Adv. 2013, 3, 24964. [Google Scholar]
- 145. Lopes O. F., Carvalho K. T. G., Avansi W., Ribeiro C., J. Phys. Chem. C 2017, 121, 13747. [Google Scholar]
- 146. Yi S.-S., Wulan B.-R., Yan J.-M., Jiang Q., Adv. Funct. Mater. 2019, 29, 1801902. [Google Scholar]
- 147. Chakraborty A. K., Shanjeda Akter M., Ahsanul Haque M., Arifuzzaman Khan G. M., Shamsul Alam M., J. Cluster Sci. 2013, 24, 701. [Google Scholar]
- 148. Zhang L., Zhuang L., Liu H., Zhang L., Cai R., Chen N., Yang X., Zhu Z., Yang D., Yao X., Small Sci. 2021, 1, 2000027. [Google Scholar]
- 149. Wei N., Cui H., Wang C., Zhang G., Song Q., Sun W., Song X., Sun M., Tian J., J. Am. Ceram. Soc. 2017, 100, 1339. [Google Scholar]
- 150. Qiu T., Liu S., Cai H., Zhou Y., Chen K., Huang Y., Feng Q., J. Mater. Sci.: Mater. Electron. 2018, 29, 17463. [Google Scholar]
- 151. Yi S., Yue X., Xu D., Liu Z., Zhao F., Wang D., Lin Y., New J. Chem. 2015, 39, 2917. [Google Scholar]
- 152. Yang X. H., Fu H. T., An X. Z., Jiang X. C., Yu A. B., RSC Adv. 2016, 6, 34103. [Google Scholar]
- 153. Gurulakshmi M., Selvaraj M., Selvamani A., Vijayan P., Sasi Rekha N. R., Shanthi K., Appl. Catal., A 2012, 449, 31. [Google Scholar]
- 154. Martha S., Das D. P., Biswal N., Parida K. M., J. Mater. Chem. 2012, 22, 10695. [Google Scholar]
- 155. Helaïli N., Bessekhouad Y., Bouguelia A., Trari M., J. Hazard. Mater. 2009, 168, 484. [DOI] [PubMed] [Google Scholar]
- 156. Sun X. Y., Zhang X., Sun X., Liu C., Qian N. X., Rao R., Wang M., Ma Y. Q., Appl. Organomet. Chem. 2019, 33 e5173. [Google Scholar]
- 157. Praveen Kumar D., Shankar M. V., Mamatha Kumari M., Sadanandam G., Srinivas B., Durgakumari V., Chem. Commun. 2013, 49, 9443. [DOI] [PubMed] [Google Scholar]
- 158. Zahoor M., Arshad A., Khan Y., Iqbal M., Bajwa S. Z., Soomro R. A., Ahmad I., Butt F. K., Iqbal M. Z., Wu A., Khan W. S., Appl. Nanosci. 2018, 8, 1091. [Google Scholar]
- 159. Song Y., Zhao H., Chen Z., Wang W., Huang L., Xu H., Li H., Phys. Status Solidi A 2016, 213, 2356. [Google Scholar]
- 160. Zhang K. H. L., Wu R., Tang F., Li W., Oropeza F. E., Qiao L., Lazarov V. K., Du Y., Payne D. J., MacManus-Driscoll J. L., Blamire M. G., ACS Appl. Mater. Interfaces 2017, 9, 26549. [DOI] [PubMed] [Google Scholar]
- 161. Joshi S., Canjeevaram Balasubramanyam R. K., Ippolito S. J., Sabri Y. M., Kandjani A. E., Bhargava S. K., Sunkara M. V., ACS Appl. Nano Mater. 2018, 1, 3375. [Google Scholar]
- 162. Liu C., Li P., Wu G., Luo B., Lin S., Ren A., Shi W., RSC Adv. 2015, 5, 33938. [Google Scholar]
- 163. Reddy K. H., Parida K., Satapathy P. K., J. Mater. Chem. A 2017, 5, 20359. [Google Scholar]
- 164. Liccardo L., Lushaj E., Dal Compare L., Moretti E., Vomiero A., Small Sci. 2022, 2, 2270006. [Google Scholar]
- 165. Mu Z., Chen S., Wang Y., Zhang Z., Li Z., Xin B., Jing L., Small Sci. 2021, 1, 2100050. [Google Scholar]
- 166. Lakhera S. K., Venkataramana R., Watts A., Anpo M., Neppolian B., Res. Chem. Intermed. 2017, 43, 5091. [Google Scholar]
- 167. Swain G., Sultana S., Naik B., Parida K., ACS Omega 2017, 2, 3745. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 168. Yin X.-L., Li L.-L., Jiang W.-J., Zhang Y., Zhang X., Wan L.-J., Hu J.-S., ACS Appl. Mater. Interfaces 2016, 8, 15258. [DOI] [PubMed] [Google Scholar]
- 169. Yan Z., Du L., Lee Phillips D., RSC Adv. 2017, 7, 55993. [Google Scholar]
- 170. He J., Chen L., Wang F., Liu Y., Chen P., Au C.-T., Yin S.-F., ChemSusChem 2016, 9, 624. [DOI] [PubMed] [Google Scholar]
- 171. Lin Y., Ren P., Wei C., CrystEngComm 2019, 21, 3439. [Google Scholar]
- 172. He H., Lin J., Fu W., Wang X., Wang H., Zeng Q., Gu Q., Li Y., Yan C., Tay B. K., Xue C., Hu X., Pantelides S. T., Zhou W., Liu Z., Adv. Energy Mater. 2016, 6, 1600464. [Google Scholar]
- 173. Prabhakar Vattikuti S. V., Byon C., Reddy C. V., Electron. Mater. Lett. 2016, 12, 812. [Google Scholar]
- 174. Li J., Yu K., Tan Y., Fu H., Zhang Q., Cong W., Song C., Yin H., Zhu Z., Dalton Trans. 2014, 43, 13136. [DOI] [PubMed] [Google Scholar]
- 175. Zeng Y., Guo N., Li H., Wang Q., Xu X., Yu Y., Han X., Yu H., Chem. Commun. 2019, 55, 683. [DOI] [PubMed] [Google Scholar]
- 176. Joy M., Mohamed A. P., Warrier K. G. K., Hareesh U. S., New J. Chem. 2017, 41, 3432. [Google Scholar]
- 177. Li H., Yu K., Tang Z., Fu H., Zhu Z., Phys. Chem. Chem. Phys. 2016, 18, 14074. [DOI] [PubMed] [Google Scholar]
- 178. Seo S., Kim S., Choi H., Lee J., Yoon H., Piao G., Park J. C., Jung Y., Song J., Jeong S. Y., Park H., Lee S., Adv. Sci. 2019, 6, 1900301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 179. Hernandez Ruiz K., Wang Z., Ciprian M., Zhu M., Tu R., Zhang L., Luo W., Fan Y., Jiang W., Small Sci. 2022, 2, 2100047. [Google Scholar]
- 180. Zhang X., Zhang L., Xie T., Wang D., J. Phys. Chem. C 2009, 113, 7371. [Google Scholar]
- 181. Dai G., Yu J., Liu G., J. Phys. Chem. C 2011, 115, 7339. [Google Scholar]
- 182. Tan X., Li X., Yu T., Zhao Y., Trans. Tianjin Univ. 2016, 22, 211. [Google Scholar]
- 183. Wang K., Zhang Y., Liu L., Lu N., Zhang Z., J. Mater. Sci. 2019, 54, 8426. [Google Scholar]
- 184. Wang T., Meng H., Yu X., Liu Y., Chen H., Zhu Y., Tang J., Tong Y., Zhang Y., RSC Adv. 2015, 5, 15469. [Google Scholar]
- 185. Liu J., Ruan L., Adeloju S. B., Wu Y., Dalton Trans. 2014, 43, 1706. [DOI] [PubMed] [Google Scholar]
- 186. Zhang D., Russ. J. Phys. Chem. A 2014, 88, 2476. [Google Scholar]
- 187. Feng Y., Liu C., Che H., Chen J., Huang K., Huang C., Shi W., CrystEngComm 2016, 18, 1790. [Google Scholar]
- 188. Yao W., Zhang B., Huang C., Ma C., Song X., Xu Q., J. Mater. Chem. 2012, 22, 4050. [Google Scholar]
- 189. Chen J., Jiang L.-L., Liu X.-P., Mao C.-J., Song J.-M., Niu H., Zhang S., J. Nanopart. Res. 2017, 19, 159. [Google Scholar]
- 190. Kang S.-Z., Yang Y.-K., Bu W., Mu J., J. Solid State Chem. 2009, 182, 2972. [Google Scholar]
- 191. Hou J., Wang Z., Jiao S., Zhu H., J. Hazard. Mater. 2011, 192, 1772. [DOI] [PubMed] [Google Scholar]
- 192. Wang W., Li S., Wen Y., Gong M., Zhang L., Yao Y., Chen Y., Acta Phys. Chim. Sin. 2008, 24, 1761. [Google Scholar]
- 193. Kim H. G., Borse P. H., Jang J. S., Jeong E. D., Jung O.-S., Suh Y. J., Lee J. S., Chem. Commun. 2009, 39, 5889. [DOI] [PubMed] [Google Scholar]
- 194. Xie T., Xu L., Liu C., Yang J., Wang M., Dalton Trans. 2014, 43, 2211. [DOI] [PubMed] [Google Scholar]
- 195. Sun D., Li J., He L., Zhao B., Wang T., Li R., Yin S., Feng Z., Sato T., CrystEngComm 2014, 16, 7564. [Google Scholar]
- 196. Sun M., Zhao Q., Du C., Liu Z., RSC Adv. 2015, 5, 22740. [Google Scholar]
- 197. He Z., Shi Y., Gao C., Wen L., Chen J., Song S., J. Phys. Chem. C 2014, 118, 389. [Google Scholar]
- 198. Feng Y., Liu C., Chen J., Che H., Xiao L., Gu W., Shi W., RSC Adv. 2016, 6, 38290. [Google Scholar]
- 199. Yi S., Zhao F., Yue X., Wang D., Lin Y., New J. Chem. 2015, 39, 6659. [Google Scholar]
- 200. Kuang P.-Y., Ran J.-R., Liu Z.-Q., Wang H.-J., Li N., Su Y.-Z., Jin Y.-G., Qiao S.-Z., Chem. - Eur. J. 2015, 21, 15360. [DOI] [PubMed] [Google Scholar]
- 201. Jiang J., Zhang X., Sun P., Zhang L., J. Phys. Chem. C 2011, 115, 20555. [Google Scholar]
- 202. Zhang S., Wang D., RSC Adv. 2015, 5, 93032. [Google Scholar]
- 203. Zhang J., Zhang L., Shen X., Xu P., Liu J., CrystEngComm 2016, 18, 3856. [Google Scholar]
- 204. Wu X., Zhou H., Gu S., Wang F., Liu J., Li W., RSC Adv. 2015, 5, 92769. [Google Scholar]
- 205. Liu S., Chen J., Liu D., Shan L., Zhang X., J. Nanopart. Res. 2019, 21, 191. [Google Scholar]
- 206. Cao F. P., Ding C. H., Liu K. C., Kang B. Y., Liu W. M., Cryst. Res. Technol. 2014, 49, 933. [Google Scholar]
- 207. Adhikari S. P., Dean H., Hood Z. D., Peng R., More K. L., Ivanov I., Wu Z., Lachgar A., RSC Adv. 2015, 5, 91094. [Google Scholar]
- 208. Lin X., Xing J., Wang W., Shan Z., Xu F., Huang F., J. Phys. Chem. C 2007, 111, 18288. [Google Scholar]
- 209. Wang D., Yue L., Guo L., Fu F., He X., Shen H., RSC Adv. 2015, 5, 72830. [Google Scholar]
- 210. Wang X., Yuan S., Chen S., Chen G., Zhang J., Zhang L., Res. Chem. Intermed. 2014, 41, 5137. [Google Scholar]
- 211. Zhuang J., Liu J., Wu Z., Li Z., Zhu K., Yan K., Xu Y., Huang Y., Lin Z., J. Mater. Sci.: Mater. Electron. 2019, 30, 11368. [Google Scholar]
- 212. Ao Y., Wang K., Wang P., Wang C., Hou J., Dalton Trans. 2016, 45, 7986. [DOI] [PubMed] [Google Scholar]
- 213. Lou Z., Li Y., Zhu L., Xie W., Niu W., Song H., Ye Z., Zhang S., J. Mater. Chem. A 2017, 5, 2732. [Google Scholar]
- 214. Dursun S., Kaya I. C., Kalem V., Akyildiz H., Dalton Trans. 2018, 47, 14662. [DOI] [PubMed] [Google Scholar]
- 215. Xu C., Jin C., Chang W., Hu X., Deng H., Liu E., Fan J., Catal. Sci. Technol. 2019, 9, 4990. [Google Scholar]
- 216. Hoseini A.-A., Farhadi S., Zabardasti A., Siadatnasab F., RSC Adv. 2019, 9, 24489. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 217. Niu F., Chen D., Qin L., Zhang N., Wang J., Chen Z., Huang Y., ChemCatChem 2015, 7, 3279. [Google Scholar]
- 218. Humayun M., Zheng Z., Fu Q., Luo W., Environ. Sci. Pollut. Res. 2019, 26, 17696. [DOI] [PubMed] [Google Scholar]
- 219. Rahimi R., Mehrehjedy A., Zargari S., Environ. Prog. Sustainable Energy 2017, 36, 1439. [Google Scholar]
- 220. Reddy K. H., Martha S., Parida K. M., Inorg. Chem. 2013, 52, 6390. [DOI] [PubMed] [Google Scholar]
- 221. Paramanik L., Reddy K. H., Sultana S., Parida K., Inorg. Chem. 2018, 57, 15133. [DOI] [PubMed] [Google Scholar]
- 222. Li K., Chen X., Zhao J., She H., Huang J., Wang L., Wang Q., ACS Appl. Energy Mater. 2022, 5, 10207. [Google Scholar]
- 223. Liu F., Chen C., Zhang Q., Zhang Z., Fang X., Nanoscale 2022, 14, 11664. [DOI] [PubMed] [Google Scholar]
- 224. Liu Y., Gu X., Qi W., Zhu H., Shan H., Chen W., Tao P., Song C., Shang W., Deng T., Wu J., ACS Appl. Mater. Interfaces 2017, 9, 12494. [DOI] [PubMed] [Google Scholar]
- 225. Yu H.-Z., Wang Y., Ying J., Wu S.-M., Lu Y., Hu J., Hu J.-S., Shen L., Xiao Y.-X., Geng W., Chang G.-G., Janiak C., Li W.-H., Yang X.-Y., ACS Appl. Mater. Interfaces 2019, 11, 27641. [DOI] [PubMed] [Google Scholar]
- 226. Manna G., Bose R., Pradhan N., Angew. Chem., Int. Ed. 2014, 53, 6743. [DOI] [PubMed] [Google Scholar]
- 227. Jiao Z.-F., Guo X.-N., Zhai Z.-Y., Jin G.-Q., Wang X.-M., Guo X.-Y., Catal. Sci. Technol. 2014, 4, 2494. [Google Scholar]
- 228. Liang Y., Guo N., Li L., Li R., Ji G., Gan S., New J. Chem. 2016, 40, 1587. [Google Scholar]
- 229. Zhang F., Cheng Z., Cui L., Duan T., Anan A., Zhang C., Kang L., RSC Adv. 2016, 6, 1844. [Google Scholar]
- 230. Martínez L., Benito M., Mata I., Soler L., Molins E., Llorca J., Sustainable Energy Fuels 2018, 2, 2284. [Google Scholar]
- 231. Ye Y., Wang K., Huang X., Lei R., Zhao Y., Liu P., Catal. Sci. Technol. 2019, 9, 3771. [Google Scholar]
- 232. Ding D., Liu K., He S., Gao C., Yin Y., Nano Lett. 2014, 14, 6731. [DOI] [PubMed] [Google Scholar]
- 233. Wan F., Kong L., Wang C., Li Y., Liu Y., Dalton Trans. 2017, 46, 1487. [DOI] [PubMed] [Google Scholar]
- 234. Cao S.-W., Yin Z., Barber J., Boey F. Y. C., Loo S. C. J., Xue C., ACS Appl. Mater. Interfaces 2012, 4, 418. [DOI] [PubMed] [Google Scholar]
- 235. He S., Huang J., Goodsell J. L., Angerhofer A., Wei W. D., Angew. Chem., Int. Ed. 2019, 58, 6038. [DOI] [PubMed] [Google Scholar]
- 236. DuChene J. S., Sweeny B. C., Johnston-Peck A. C., Su D., Stach E. A., Wei W. D., Angew. Chem., Int. Ed. 2014, 53, 7887. [DOI] [PubMed] [Google Scholar]
- 237. Chen C., Zheng Y., Zhan Y., Lin X., Zheng Q., Wei K., Dalton Trans. 2011, 40, 9566. [DOI] [PubMed] [Google Scholar]
- 238. Su C., Liu L., Zhang M., Zhang Y., Shao C., CrystEngComm 2012, 14, 3989. [Google Scholar]
- 239. Wu W., Liao L., Zhang S., Zhou J., Xiao X., Ren F., Sun L., Dai Z., Jiang C., Nanoscale 2013, 5, 5628. [DOI] [PubMed] [Google Scholar]
- 240. Wen Y., Liu B., Zeng W., Wang Y., Nanoscale 2013, 5, 9739. [DOI] [PubMed] [Google Scholar]
- 241. Kaur R., Pal B., New J. Chem. 2015, 39, 5966. [Google Scholar]
- 242. Zhao Z., Zhang W., Lv X., Sun Y., Dong F., Zhang Y., Environ. Sci.: Nano 2016, 3, 1306. [Google Scholar]
- 243. He C., Li X., Li Y., Li J., Xi G., Catal. Sci. Technol. 2017, 7, 3702. [Google Scholar]
- 244. Shiraishi Y., Yasumoto N., Imai J., Sakamoto H., Tanaka S., Ichikawa S., Ohtani B., Hirai T., Nanoscale 2017, 9, 8349. [DOI] [PubMed] [Google Scholar]
- 245. Qu Y., Zhou W., Ren Z., Tian C., Li J., Fu H., ChemPlusChem 2014, 79, 995. [Google Scholar]
- 246. Li H., Lu W., Tian J., Luo Y., Asiri A. M., Al-Youbi A. O., Sun X., Chem. - Eur. J. 2012, 18, 8508. [DOI] [PubMed] [Google Scholar]
- 247. Sharma V., Kumar S., Krishnan V., ChemistrySelect 2016, 1, 2963. [Google Scholar]
- 248. Wang H., Gao Y., Liu J., Li X., Ji M., Zhang E., Cheng X., Xu M., Liu J., Rong H., Chen W., Fan F., Li C., Zhang J., Adv. Energy Mater. 2019, 9, 1803889. [Google Scholar]
- 249. Khalid N. R., Hussain M. K., Murtaza G., Ikram M., Ahmad M., Hammad A., J. Inorg. Organomet. Polym. Mater. 2019, 29, 1288. [Google Scholar]
- 250. Dong Y., Feng C., Zhang J., Jiang P., Wang G., Wu X., Miao H., Chem. Asian J. 2015, 10, 687. [DOI] [PubMed] [Google Scholar]
- 251. Lin X., Hou J., Jiang S., Lin Z., Wang M., Che G., RSC Adv. 2015, 5, 104815. [Google Scholar]
- 252. Wei Y., Jiao J., Zhao Z., Zhong W., Li J., Liu J., Jiang G., Duan A., J. Mater. Chem. A 2015, 3, 11074. [Google Scholar]
- 253. Xu Z., Lin S.-Y., RSC Adv. 2016, 6, 84738. [Google Scholar]
- 254. Yu Z. B., Xie Y. P., Liu G., Lu G. Q., Ma X. L., J. Mater. Chem. A 2013, 1, 2773. [Google Scholar]
- 255. Tada H., Mitsui T., Kiyonaga T., Akita T., Tanaka K., Nat. Mater. 2006, 5, 782. [DOI] [PubMed] [Google Scholar]
- 256. Li Q., Guan Z., Wu D., Zhao X., Bao S., Tian B., Zhang J., ACS Sustainable Chem. Eng. 2017, 5, 6958. [Google Scholar]
- 257. Zhou C., Wang S., Zhao Z., Shi Z., Yan S., Zou Z., Adv. Funct. Mater. 2018, 28, 1801214. [Google Scholar]
- 258. Lingampalli S. R., Gautam U. K., Rao C. N. R., Energy Environ. Sci. 2013, 6, 3589. [Google Scholar]
- 259. Wang D., Shen H., Guo L., Fu F., Liang Y., New J. Chem. 2016, 40, 8614. [Google Scholar]
- 260. Deng Y., Tang L., Zeng G., Feng C., Dong H., Wang J., Feng H., Liu Y., Zhou Y., Pang Y., Nano 2017, 4, 1494. [Google Scholar]
- 261. Fang H., Cao X., Yu J., Lv X., Yang N., Wang T., Jiang W., J. Mater. Sci. 2019, 54, 286. [Google Scholar]
- 262. Wu D., Bao S., Wang Z., Zhang Z., Tian B., Zhang J., ChemistrySelect 2018, 3, 4889. [Google Scholar]
- 263. Testoni G. O., Amoresi R. A. C., Lustosa G. M. M. M., Costa J. P. C., Nogueira M. V., Ruiz M., Zaghete M. A., Perazolli L. A., Solid State Sci. 2018, 76, 65. [Google Scholar]
- 264. Jing X., Peng X., Cao Y., Wang W., Wang S., RSC Adv. 2018, 8, 33993. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 265. Liu J., Wu W., Tian Q., Yang S., Sun L., Xiao X., Ren F., Jiang C., Roy V. A. L., RSC Adv. 2015, 5, 61239. [Google Scholar]
- 266. Chen Z., Bing F., Liu Q., Zhang Z., Fang X., J. Mater. Chem. A 2015, 3, 4652. [Google Scholar]
- 267. Cheng H., Hou J., Zhu H., Guo X.-M., RSC Adv. 2014, 4, 41622. [Google Scholar]
- 268. Cui X., Wang Y., Jiang G., Zhao Z., Xu C., Wei Y., Duan A., Liu J., Gao J., RSC Adv. 2014, 4, 15689. [Google Scholar]
- 269. Zhao P., Zhang J., Jiang J., Wang H., Xie T., Lin Y., J. Inorg. Organom. Polym. Mater. 2020, 30, 1589. [Google Scholar]
- 270. Hu G., Hu C.-X., Zhu Z.-Y., Zhang L., Wang Q., Zhang H.-L., ACS Sustainable Chem. Eng. 2018, 6, 8801. [Google Scholar]
- 271. Shan P., Niu C., Huang D., Zeng G., Zhang H., RSC Adv. 2015, 5, 89105. [Google Scholar]
- 272. Zhang L., Yuan X., Wang H., Chen X., Wu Z., Liu Y., Gu S., Jiang Q., Zeng G., RSC Adv. 2015, 5, 98184. [Google Scholar]
- 273. Mukhopadhyay S., Maiti D., Chatterjee S., Devi P. S., Suresh Kumar G., Phys. Chem. Chem. Phys. 2016, 18, 31622. [DOI] [PubMed] [Google Scholar]
- 274. Guo F., Shi W., Cai Y., Shao S., Zhang T., Guan W., Huang H., Liu Y., RSC Adv. 2016, 6, 93887. [Google Scholar]
- 275. Xiang X.-B., Yu Y., Wen W., Wu J.-M., New J. Chem. 2018, 42, 265. [Google Scholar]
- 276. Jiang Y., Yang Z., Zhang P., Jin H., Ding Y., RSC Adv. 2018, 8, 13408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 277. Li W., Chen Q., Lei X., Gong S., RSC Adv. 2019, 9, 5100. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 278. Zhao H., Liu X., Dong Y., Li H., Song R., Xia Y., Wang H., New J. Chem. 2019, 43, 13929. [Google Scholar]
- 279. Shi Y., Chen Y., Tian G., Wang L., Xiao Y., Fu H., ChemCatChem 2015, 7, 1684. [Google Scholar]
- 280. Begum G., Manna J., Rana R. K., Chem. A Euro. J. 2012, 18, 6847. [DOI] [PubMed] [Google Scholar]
- 281. Lou Y., Zhang Y., Cheng L., Chen J., Zhao Y., ChemSusChem 2018, 11, 1505. [DOI] [PubMed] [Google Scholar]
- 282. Zhang X., Li L., Zhou Q., Cao Y., Ma F., Li Y., New J. Chem. 2019, 43, 10689. [Google Scholar]
- 283. Chen Y.-C., Pu Y.-C., Hsu Y.-J., J. Phys. Chem. C 2012, 116, 2967. [Google Scholar]
- 284. Liu Y., Zhou F., Zhan S., Yang Y., J. Inorg. Organomet. Polym. Mater. 2017, 27, 1365. [Google Scholar]
- 285. Malik R., Tomer V. K., Chaudhary V., Dahiya M. S., Rana P. S., Nehra S. P., Duhan S., ChemistrySelect 2016, 1, 3247. [Google Scholar]
- 286. Zhao H., Kang J., Nan H., Yang G., Wei H., Chen H., Wang G., Lin H., ChemistrySelect 2019, 4, 2892. [Google Scholar]
- 287. Pal J., Sasmal A. K., Ganguly M., Pal T., J. Phys. Chem. C 2015, 119, 3780. [Google Scholar]
- 288. Ye J., Fu C., He J., Zhou X., Sun Y., Liu J., Zhang Y., Xu L., Wang J., Yang Y., ChemistrySelect 2019, 4, 5002. [Google Scholar]
- 289. Fu F., Zhang Y., Yan L., Wang Y., Gao X., Wang D., J. Mater. Sci.: Mater. Electron. 2017, 28, 691. [Google Scholar]
- 290. Hu Z., Chen D., Zhan X., Wang F., Qin L., Huang Y., Appl. Phys. A 2017, 123, 399. [Google Scholar]
- 291. Zhu F., Li C., Ha M. N., Liu Z., Guo Q., Zhao Z., J. Mater. Sci. 2016, 51, 4639. [Google Scholar]
- 292. Zhao Y., Tao C., Xiao G., Wei G., Li L., Liu C., Su H., Nanoscale 2016, 8, 5313. [DOI] [PubMed] [Google Scholar]
- 293. Manjunath K., Souza V. S., Nagaraju G., Marcos Leite Santos J., Dupont J., Ramakrishnappa T., New J. Chem. 2016, 40, 10172. [Google Scholar]
- 294. Liu H., Hu C., Zhai H., Yang J., Liu X., Jia H., RSC Adv. 2017, 7, 37220. [Google Scholar]
- 295. Akbarzadeh E., Setayesh S. R., Gholami M. R., RSC Adv. 2016, 6, 14909. [Google Scholar]
- 296. Wu J., Luo C., Li D., Fu Q., Pan C., J. Mater. Sci. 2017, 52, 1285. [Google Scholar]
- 297. Zhang L., Qin M., Yu Y., Zhang M., Zhao X., Qian J., Wu H., J. Mater. Sci.: Mater. Electron. 2019, 30, 5158. [Google Scholar]
- 298. Li Y.-Y., Wang J.-H., Luo Z.-J., Chen K., Cheng Z.-Q., Ma L., Ding S.-J., Zhou L., Wang Q.-Q., Sci. Rep. 2017, 7, 7178. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 299. Zhou D., Chen Z., Yang Q., Shen C., Tang G., Zhao S., Zhang J., Chen D., Wei Q., Dong X., ChemCatChem 2016, 8, 3064. [Google Scholar]
- 300. John P., Johari K., Gnanasundaram N., Appusamy A., Thanabalan M., Environ. Technol. Innov. 2021, 22, 101412. [Google Scholar]
- 301. Wang W., Cheng H., Huang B., Liu X., Qin X., Zhang X., Dai Y., J. Colloid Interface Sci. 2015, 442, 97. [DOI] [PubMed] [Google Scholar]
- 302. Sun M., Wang Y., Shao Y., He Y., Zeng Q., Liang H., Yan T., Du B., J. Colloid Interface Sci. 2017, 501, 123. [DOI] [PubMed] [Google Scholar]
- 303. Lv J., Dai K., Zhang J., Geng L., Liang C., Liu Q., Zhu G., Chen C., Appl. Surf. Sci. 2015, 358, 377. [Google Scholar]
- 304. Tang D., Zhang G., Appl. Surf. Sci. 2017, 391, 415. [Google Scholar]
- 305. Zhu B., Xia P., Li Y., Ho W., Yu J., Appl. Surf. Sci. 2017, 391, 175. [Google Scholar]
- 306. Luo J., Zhou X., Ma L., Xu X., Appl. Surf. Sci. 2016, 390, 357. [Google Scholar]
- 307. Zhang J., Hu Y., Jiang X., Chen S., Meng S., Fu X., J. Hazard. Mater. 2014, 280, 713. [DOI] [PubMed] [Google Scholar]
- 308. Sun R., Shi Q., Zhang M., Xie L., Chen J., Yang X., Chen M., Zhao W., J. Alloys Compd. 2017, 714, 619. [Google Scholar]
- 309. Jin Z., Murakami N., Tsubota T., Ohno T., Appl. Catal., B 2014, 150–151, 479. [Google Scholar]
- 310. Chen S., Hu Y., Meng S., Fu X., Appl. Catal., B 2014, 150–151, 564. [Google Scholar]
- 311. Tahir B., Tahir M., Nawawi M. G. M., J. CO2 Util. 2020, 41, 101270. [Google Scholar]
- 312. Antoniadou M., Arfanis M. K., Ibrahim I., Falaras P., Water 2019, 11, 2439. [Google Scholar]
- 313. He Y., Wang Y., Zhang L., Teng B., Fan M., Appl. Catal., B 2015, 168–169, 1. [Google Scholar]
- 314. Hong Y., Jiang Y., Li C., Fan W., Yan X., Yan M., Shi W., Appl. Catal., B 2016, 180, 663. [Google Scholar]
- 315. Shang Y., Chen X., Liu W., Tan P., Chen H., Wu L., Ma C., Xiong X., Pan J., Appl. Catal., B 2017, 204, 78. [Google Scholar]
- 316. Deng Y., Tang L., Zeng G., Wang J., Zhou Y., Wang J., Tang J., Liu Y., Peng B., Chen F., J. Mole. Catal. A: Chem. 2016, 421, 209. [Google Scholar]
- 317. Wan Z., Zhang G., Wu X., Yin S., Appl. Catal., B 2017, 207, 17. [Google Scholar]
- 318. Zhao X., Yu J., Cui H., Wang T., J. Photochem. Photobiol., A 2017, 335, 130. [Google Scholar]
- 319. Chen J., Zhong J., Li J., Huang S., Hu W., Li M., Du Q., Mole. Catal. 2017, 435, 91. [Google Scholar]
- 320. Wang J.-C., Yao H.-C., Fan Z.-Y., Zhang L., Wang J.-S., Zang S.-Q., Li Z.-J., ACS Appl. Mater. Interfaces 2016, 8, 3765. [DOI] [PubMed] [Google Scholar]
- 321. Zhou X., Shao C., Yang S., Li X., Guo X., Wang X., Li X., Liu Y., ACS Sustainable Chem. Eng. 2018, 6, 2316. [Google Scholar]
- 322. Meng S., Ning X., Zhang T., Chen S.-F., Fu X., Phys. Chem. Chem. Phys. 2015, 17, 11577. [DOI] [PubMed] [Google Scholar]
- 323. He Y., Zhang L., Wang X., Wu Y., Lin H., Zhao L., Weng W., Wan H., Fan M., RSC Adv. 2014, 4, 13610. [Google Scholar]
- 324. He Y., Cai J., Li T., Wu Y., Yi Y., Luo M., Zhao L., Ind. Eng. Chem. Res. 2012, 51, 14729. [Google Scholar]
- 325. Li M., Zhang L., Fan X., Zhou Y., Wu M., Shi J., J. Mater. Chem. A 2015, 3, 5189. [Google Scholar]
- 326. Wang X., Zhang L., Lin H., Nong Q., Wu Y., Wu T., He Y., RSC Adv. 2014, 4, 40029. [Google Scholar]
- 327. Shang Y., Fan H., Sun Y., Wang W., Sustainable Energy Fuels 2022, 6, 3729. [Google Scholar]
- 328. Wang B., Chen D., Li N., Xu Q., Li H., He J., Lu J., J. Colloid Interface Sci. 2020, 576, 426. [DOI] [PubMed] [Google Scholar]
- 329. Guo R.-T., Liu X.-Y., Qin H., Wang Z.-Y., Shi X., Pan W.-G., Fu Z.-G., Tang J.-Y., Jia P.-Y., Miao Y.-F., Gu J.-W., Appl. Surf. Sci. 2020, 500, 144059. [Google Scholar]
- 330. Alhaddad M., Mohamed R. M., Mahmoud M. H. H., ACS Omega 2021, 6, 8717. [DOI] [PMC free article] [PubMed] [Google Scholar]
- 331. Li J., Cao W., Li Y., Xu X., Jiang Y., Lin K., ACS Appl. Energy Mater. 2022, 5, 9463. [Google Scholar]
- 332. Sun H., Park S.-J., Appl. Surf. Sci. 2020, 531, 147325. [Google Scholar]
- 333. Liu D., Chen D., Li N., Xu Q., Li H., He J., Lu J., Angew. Chem., Int. Ed. 2020, 59, 4519. [DOI] [PubMed] [Google Scholar]
- 334. Zhao X., Gao M., Liu Q., Zhang Y., Wang H., Yang G., Huo P., Sustainable Energy Fuels 2022, 6, 3768. [Google Scholar]
- 335. Miao X., Shen X., Wu J., Ji Z., Wang J., Kong L., Liu M., Song C., Appl. Catal., A 2017, 539, 104. [Google Scholar]
- 336. Li W., Feng C., Dai S., Yue J., Hua F., Hou H., Appl. Catal., A 2015, 168–169, 465. [Google Scholar]
- 337. Chen F., Yang Q., Wang Y., Zhao J., Wang D., Li X., Guo Z., Wang H., Deng Y., Niu C., Zeng G., Appl. Catal., B 2017, 205, 133. [Google Scholar]
- 338. Wang Q., Hisatomi T., Jia Q., Tokudome H., Zhong M., Wang C., Pan Z., Takata T., Nakabayashi M., Shibata N., Li Y., Sharp I. D., Kudo A., Yamada T., Domen K., Nat. Mater. 2016, 15, 611. [DOI] [PubMed] [Google Scholar]
- 339. Ma D., Wu J., Gao M., Xin Y., Sun Y., Ma T., Chem. Eng. J. 2017, 313, 1567. [Google Scholar]
- 340. Jo W.-K., Selvam N. C. S., Chem. Eng. J. 2017, 317, 913. [Google Scholar]
- 341. Hu X., Hu J., Peng Q., Ma X., Dong S., Wang H., Mater. Res. Bull. 2020, 122, 110682. [Google Scholar]
- 342. Shabnam L., Faisal S. N., Hoang V. C., Martucci A., Gomes V. G., J. Electroanal. Chem. 2020, 856, 113503. [Google Scholar]
- 343. Gebreslassie G., Bharali P., Chandra U., Sergawie A., Boruah P. K., Das M. R., Alemayehu E., J. Photochem. Photobiol., A 2019, 382, 111960. [Google Scholar]
- 344. Bao Y., Chen K., Mole. Catal. 2017, 432, 187. [Google Scholar]
- 345. Lu D., Wang H., Zhao X., Kondamareddy K. K., Ding J., Li C., Fang P., ACS Sustainable Chem. Eng. 2017, 5, 1436. [Google Scholar]
- 346. Ma X., Jiang Q., Guo W., Zheng M., Xu W., Ma F., Hou B., RSC Adv. 2016, 6, 28263. [Google Scholar]
- 347. Wu J., Shen X., Miao X., Ji Z., Wang J., Wang T., Liu M., Eur. J. Inorg. Chem. 2017, 2017, 2845. [Google Scholar]
- 348. Liu B., Mu L., Han X., Zhang J., Shi H., J. Photochem. Photobiol., A 2019, 380, 111866. [Google Scholar]
- 349. Yang X., Tang H., Xu J., Antonietti M., Shalom M., ChemSusChem 2015, 8, 1350. [DOI] [PubMed] [Google Scholar]
- 350. Feng W., Fang J., Zhou G., Zhang L., Lu S., Wu S., Chen Y., Ling Y., Fang Z., Mol. Catal. 2017, 434, 69. [Google Scholar]
- 351. Shi L., Liang L., Wang F., Liu M., Sun J., J. Mater. Sci. 2015, 50, 1718. [Google Scholar]
- 352. Zhang G., Zhu X., Chen D., Li N., Xu Q., Li H., He J., Xu H., Lu J., Environ. Sci.: Nano 2020, 7, 676. [Google Scholar]
- 353. Yanalak G., Yılmaz S., Eroglu Z., Aslan E., Metin O., Patir I. H., Int. J. Energy Res. 2022, 46, 17189. [Google Scholar]

ZnO, ZnO
NiO