Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Dec;345:75–85. doi: 10.1113/jphysiol.1983.sp014966

Cardiac action potential duration and contractility in the intact dog heart.

A J Drake-Holland, M I Noble, M Pieterse, V J Schouten, W A Seed, H E ter Keurs, B Wohlfart
PMCID: PMC1193785  PMID: 6663514

Abstract

The maximum rate of rise of left ventricular pressure (DP) and action potential duration (a.p.d.) were measured in closed-chest anaesthetized dogs with atrioventricular dissociation and beta-adrenergic blockade. Right ventricular stimulation was carried out with protocols consisting of a conditioning 'priming' period and a test period. When a single test stimulus was introduced at varying intervals after the priming period, DP was found to be maximal at 800-1000 ms. With this single test stimulus fixed at the optimum, DP was found to be a variable inverse function of the a.p.d. of the same beat; no positive correlation could be found between DP and a.p.d. When a second test stimulus at the optimum interval was introduced after the first, the DP (DP2) was found to be strongly dependent on that elicited by the first test stimulus (DP1); the relationship was positive, linear, independent of the method used to vary DP, and independent of whether DP1 was depressed or potentiated. The slope of the relationship was less than 1.0 and the line passed through the point where DP2 = DP1; this is the point of continuous stimulation at the optimum interval in a steady state. This result is consistent with the hypothesis that the coefficient relating DP1 to DP2, at constant a.p.d. of the first test pulse (AP1), is an index of the proportion of the activator of contraction stored during relaxation of test beat 1 which is released again on beat 2. In order to test the hypothesis that the remaining contractility depended on the action potential of test beat 1, AP1 was varied by changing the intervals between the priming stimuli. In order to determine the relationship between DP2 and AP1 it was necessary to carry out multiple regression analysis because DP2 was already known to be strongly dependent on DP1 (point 3 above), i.e. DP2 = BDP(DP1) + BAP(AP1 - D). This analysis yielded highly significant positive values for the coefficients BDP and BAP. This result is compatible with the postulate that a.p.d. influences the amount of the activator of contraction entering the intracellular store, but that this activator is not available for release to the contractile proteins until the next depolarization.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allen D. G., Blinks J. R. Calcium transients in aequorin-injected frog cardiac muscle. Nature. 1978 Jun 15;273(5663):509–513. doi: 10.1038/273509a0. [DOI] [PubMed] [Google Scholar]
  2. Allen D. G., Jewell B. R., Wood E. H. Studies of the contractility of mammalian myocardium at low rates of stimulation. J Physiol. 1976 Jan;254(1):1–17. doi: 10.1113/jphysiol.1976.sp011217. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Allen D. G., Kurihara S. Calcium transients in mammalian ventricular muscle. Eur Heart J. 1980;Suppl A:5–15. doi: 10.1093/eurheartj/1.suppl_1.5. [DOI] [PubMed] [Google Scholar]
  4. Allen D. G., Kurihara S. The effects of muscle length on intracellular calcium transients in mammalian cardiac muscle. J Physiol. 1982 Jun;327:79–94. doi: 10.1113/jphysiol.1982.sp014221. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Allen D. G. On the relationship between action potential duration and tension in cat papillary muscle. Cardiovasc Res. 1977 May;11(3):210–218. doi: 10.1093/cvr/11.3.210. [DOI] [PubMed] [Google Scholar]
  6. Antoni H. Elementary events in excitation-contraction coupling of the mammalian myocardium. Basic Res Cardiol. 1977 Mar-Jun;72(2-3):140–146. doi: 10.1007/BF01906352. [DOI] [PubMed] [Google Scholar]
  7. Antoni H., Jacob R., Kaufmann R. Mechanische Reaktionen des Frosch- und Säugetiermyokards bei Veränderung der Aktionspotential-Dauer durch konstante Gleichstromimpulse. Pflugers Arch. 1969;306(1):33–57. doi: 10.1007/BF00586610. [DOI] [PubMed] [Google Scholar]
  8. Attwell D., Cohen I., Eisner D. A. The effects of heart rate on the action potential of guinea-pig and human ventricular muscle. J Physiol. 1981;313:439–461. doi: 10.1113/jphysiol.1981.sp013675. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Beeler G. W., Jr, Reuter H. The relation between membrane potential, membrane currents and activation of contraction in ventricular myocardial fibres. J Physiol. 1970 Mar;207(1):211–229. doi: 10.1113/jphysiol.1970.sp009057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bourdillon P. D., Poole-Wilson P. A. The effects of verapamil, quiescence, and cardioplegia on calcium exchange and mechanical function in ischemic rabbit myocardium. Circ Res. 1982 Mar;50(3):360–368. doi: 10.1161/01.res.50.3.360. [DOI] [PubMed] [Google Scholar]
  11. Boyett M. R. An analysis of the effect of the rate of stimulation and adrenaline on the duration of the cardiac action potential. Pflugers Arch. 1978 Nov 14;377(2):155–166. doi: 10.1007/BF00582846. [DOI] [PubMed] [Google Scholar]
  12. Boyett M. R., Jewell B. R. A study of the factors responsible for rate-dependent shortening of the action potential in mammalian ventricular muscle. J Physiol. 1978 Dec;285:359–380. doi: 10.1113/jphysiol.1978.sp012576. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Edman K. A., Jóhannsson M. The contractile state of rabbit papillary muscle in relation to stimulation frequency. J Physiol. 1976 Jan;254(3):565–581. doi: 10.1113/jphysiol.1976.sp011247. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. GIBBS C. L., JOHNSON E. A. Effect of changes in frequency of stimulation upon rabbit ventricular action potential. Circ Res. 1961 Jan;9:165–170. doi: 10.1161/01.res.9.1.165. [DOI] [PubMed] [Google Scholar]
  15. Jewell B. R. A reexamination of the influence of muscle length on myocardial performance. Circ Res. 1977 Mar;40(3):221–230. doi: 10.1161/01.res.40.3.221. [DOI] [PubMed] [Google Scholar]
  16. Kaufmann R., Bayer R., Fürniss T., Krause H., Tritthart H. Calcium-movement controlling cardiac contractility II. Analog computation of cardiac excitation-contraction coupling on the basis of calcium kinetics in a multi-compartment model. J Mol Cell Cardiol. 1974 Dec;6(6):543–559. doi: 10.1016/0022-2828(74)90035-2. [DOI] [PubMed] [Google Scholar]
  17. Koch-Weser J. Potentiation of myocardial contractility by continual premature extra-activations. Circ Res. 1966 Mar;18(3):330–343. doi: 10.1161/01.res.18.3.330. [DOI] [PubMed] [Google Scholar]
  18. Langer G. A., Brady A. J., Tan S. T., Serena D. Correlation of the glycoside response, the force staircase, and the action potential configuration in the neonatal rat heart. Circ Res. 1975 Jun;36(6):744–752. doi: 10.1161/01.res.36.6.744. [DOI] [PubMed] [Google Scholar]
  19. Reichel H. The effect of isolation on myocardial properties. Basic Res Cardiol. 1976 Jan-Feb;71(1):1–16. doi: 10.1007/BF01907778. [DOI] [PubMed] [Google Scholar]
  20. Schulze J. J. Observations on the staircase phenomenon in guinea pig atrium. Pflugers Arch. 1981 Jul;391(1):9–16. doi: 10.1007/BF00580686. [DOI] [PubMed] [Google Scholar]
  21. Singh B. N., Vaughan Williams E. M. A third class of anti-arrhythmic action. Effects on atrial and ventricular intracellular potentials, and other pharmacological actions on cardiac muscle, of MJ 1999 and AH 3474. Br J Pharmacol. 1970 Aug;39(4):675–687. doi: 10.1111/j.1476-5381.1970.tb09893.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Steiner C., Kovalik A. T. A simple technique for production of chronic complete heart block in dogs. J Appl Physiol. 1968 Nov;25(5):631–632. doi: 10.1152/jappl.1968.25.5.631. [DOI] [PubMed] [Google Scholar]
  23. Van den Bos G. C., Elzinga C., Westerhof N., Noble M. I. Problems in the use of indices of myocardial contractility. Cardiovasc Res. 1973 Nov;7(6):834–848. doi: 10.1093/cvr/7.6.834. [DOI] [PubMed] [Google Scholar]
  24. Wohlfart B., Elzinga G. Electrical and mechanical responses of the intact rabbit heart in relation to the excitation interval. A comparison with the isolated papillary muscle preparation. Acta Physiol Scand. 1982 Jul;115(3):331–340. doi: 10.1111/j.1748-1716.1982.tb07086.x. [DOI] [PubMed] [Google Scholar]
  25. Wood E. H., Heppner R. L., Weidmann S. Inotropic effects of electric currents. I. Positive and negative effects of constant electric currents or current pulses applied during cardiac action potentials. II. Hypotheses: calcium movements, excitation-contraction coupling and inotropic effects. Circ Res. 1969 Mar;24(3):409–445. doi: 10.1161/01.res.24.3.409. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES