Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Dec;345:477–488. doi: 10.1113/jphysiol.1983.sp014990

Noradrenaline-mediated synaptic inhibition in rat locus coeruleus neurones.

T M Egan, G Henderson, R A North, J T Williams
PMCID: PMC1193809  PMID: 6141289

Abstract

Intracellular recordings were made from neurones in the nucleus locus coeruleus (l.c.) in slices of rat pons maintained in vitro. Focal electrical stimulation to the slice surface within the region of the l.c. evoked a synaptic depolarization followed by a hyperpolarization. These potentials were graded with stimulus intensity and were abolished in calcium-free and/or high-magnesium solutions. The nature of the hyperpolarizing synaptic potential (i.p.s.p.) was investigated. The i.p.s.p. amplitude decreased as the membrane was artificially made more negative and reversed at -114 mV. This reversal potential shifted to less negative potentials in solutions of elevated potassium ion content as predicted by the Nernst equation. The i.p.s.p. was potentiated in amplitude and its time course was prolonged by desmethylimipramine (DMI). Yohimbine (100 nM) and phentolamine (100 nM) reversibly abolished the i.p.s.p. and did not change the synaptic depolarization. Noradrenaline hyperpolarized all l.c. neurones tested, whether applied by perfusion (1-30 microM) or by pressure ejection from a micropipette placed in the solution near the recording site. The noradrenaline-induced hyperpolarization was accompanied by an increase in conductance and it reversed in polarity at -104 mV. The reversal potential of the noradrenaline hyperpolarization became less negative when the potassium ion content was increased. The noradrenaline-induced hyperpolarization was potentiated by DMI and was antagonized by yohimbine and phentolamine in the same concentrations which blocked the i.p.s.p. The results support the notion that l.c. neurones can release noradrenaline onto the somadendritic membrane of other l.c. neurones and thereby provide local feed-back inhibition.

Full text

PDF
477

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aghajanian G. K., Cedarbaum J. M., Wang R. Y. Evidence for norepinephrine-mediated collateral inhibition of locus coeruleus neurons. Brain Res. 1977 Nov 18;136(3):570–577. doi: 10.1016/0006-8993(77)90083-x. [DOI] [PubMed] [Google Scholar]
  2. Aghajanian G. K., VanderMaelen C. P. alpha 2-adrenoceptor-mediated hyperpolarization of locus coeruleus neurons: intracellular studies in vivo. Science. 1982 Mar 12;215(4538):1394–1396. doi: 10.1126/science.6278591. [DOI] [PubMed] [Google Scholar]
  3. Amaral D. G., Sinnamon H. M. The locus coeruleus: neurobiology of a central noradrenergic nucleus. Prog Neurobiol. 1977;9(3):147–196. doi: 10.1016/0301-0082(77)90016-8. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A., Caulfield M. P. Hyperpolarizing 'alpha 2'-adrenoceptors in rat sympathetic ganglia. Br J Pharmacol. 1979 Mar;65(3):435–445. doi: 10.1111/j.1476-5381.1979.tb07848.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cedarbaum J. M., Aghajanian G. K. Catecholamine receptors on locus coeruleus neurons: pharmacological characterization. Eur J Pharmacol. 1977 Aug 15;44(4):375–385. doi: 10.1016/0014-2999(77)90312-0. [DOI] [PubMed] [Google Scholar]
  6. Cedarbaum J. M., Aghajanian G. K. Noradrenergic neurons of the locus coeruleus: inhibition by epinephrine and activation by the alpha-antagonist piperoxane. Brain Res. 1976 Aug 13;112(2):413–419. doi: 10.1016/0006-8993(76)90297-3. [DOI] [PubMed] [Google Scholar]
  7. Christ D. D., Nishi S. Anomalous rectification of mammalian sympathetic ganglion cells. Exp Neurol. 1973 Sep;40(3):806–815. doi: 10.1016/0014-4886(73)90114-3. [DOI] [PubMed] [Google Scholar]
  8. De Groat W. C., Volle R. L. The actions of the catecholamines on transmission in the superior cervical ganglion of the cat. J Pharmacol Exp Ther. 1966 Oct;154(1):1–13. [PubMed] [Google Scholar]
  9. Ginsborg B. L. Ion movements in junctional transmission. Pharmacol Rev. 1967 Sep;19(3):289–316. [PubMed] [Google Scholar]
  10. Henderson G., Pepper C. M., Shefner S. A. Electrophysiological properties of neurons contained in the locus coeruleus and mesencephalic nucleus of the trigeminal nerve in vitro. Exp Brain Res. 1982;45(1-2):29–37. doi: 10.1007/BF00235760. [DOI] [PubMed] [Google Scholar]
  11. Morita K., North R. A. Clonidine activates membrane potassium conductance in myenteric neurones. Br J Pharmacol. 1981 Oct;74(2):419–428. doi: 10.1111/j.1476-5381.1981.tb09987.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Morita K., North R. A., Tokimasa T. The calcium-activated potassium conductance in guinea-pig myenteric neurones. J Physiol. 1982 Aug;329:341–354. doi: 10.1113/jphysiol.1982.sp014306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Nakamura S., Tepper J. M., Young S. J., Groves P. M. Neurophysiological consequences of presynaptic receptor activation: changes in noradrenergic terminal excitability. Brain Res. 1981 Dec 7;226(1-2):155–170. doi: 10.1016/0006-8993(81)91090-8. [DOI] [PubMed] [Google Scholar]
  14. Nicoll R. A., Alger B. E. Synaptic excitation may activate a calcium-dependent potassium conductance in hippocampal pyramidal cells. Science. 1981 May 22;212(4497):957–959. doi: 10.1126/science.6262912. [DOI] [PubMed] [Google Scholar]
  15. Segal M. The action of norepinephrine in the rat hippocampus: intracellular studies in the slice preparation. Brain Res. 1981 Feb 9;206(1):107–128. doi: 10.1016/0006-8993(81)90104-9. [DOI] [PubMed] [Google Scholar]
  16. Svensson T. H., Bunney B. S., Aghajanian G. K. Inhibition of both noradrenergic and serotonergic neurons in brain by the alpha-adrenergic agonist clonidine. Brain Res. 1975 Jul 11;92(2):291–306. doi: 10.1016/0006-8993(75)90276-0. [DOI] [PubMed] [Google Scholar]
  17. Ungerstedt U. Stereotaxic mapping of the monoamine pathways in the rat brain. Acta Physiol Scand Suppl. 1971;367:1–48. doi: 10.1111/j.1365-201x.1971.tb10998.x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES