Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Nov;344:335–345. doi: 10.1113/jphysiol.1983.sp014943

Antibodies to motor nerve terminals: an electrophysiological study of a human myasthenic syndrome transferred to mouse.

B Lang, J Newsom-Davis, C Prior, D Wray
PMCID: PMC1193844  PMID: 6655585

Abstract

Immunoglobulin G(IgG) prepared from the plasma of patients with a presynaptic disorder of neuromuscular transmission (Lambert-Eaton myasthenic syndrome, l.e.m.s.), or from normal pooled control human plasma, was injected into mice (10 mg daily) for up to 99 days. Micro-electrodes were used to record end-plate potentials from the diaphragm muscle bathed in normal Krebs solution containing tubocurarine (1.0-4.6 microM). At 0.5 Hz nerve stimulation frequency, the quantal content was significantly reduced (P less than 0.01-P less than 0.001) in mice treated with six l.e.m.s. patients' IgG each compared with paired controls. The pooled quantal content was 55 +/- 3 (n = 110 end-plates) for all test animals and 131 +/- 9 (n = 47) for all controls (P less than 0.001). During short trains at 20 or 40 Hz nerve stimulation, control muscles showed marked depression, while test muscles showed either facilitation or less marked depression. Quantal content throughout these trains remained lower than in controls. The results indicate that IgG antibody from l.e.m.s. patients can induce a similar physiologic disorder in injected mice, and they support the view that this antibody interferes with evoked release of transmitter in l.e.m.s. by binding to nerve terminal determinants.

Full text

PDF
335

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Auerbach A., Betz W. Does curare affect transmitter release? J Physiol. 1971 Mar;213(3):691–705. doi: 10.1113/jphysiol.1971.sp009409. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blaber L. C. The prejunctional actions of some non-depolarizing blocking drugs. Br J Pharmacol. 1973 Jan;47(1):109–116. doi: 10.1111/j.1476-5381.1973.tb08163.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Blaer L. C. The effect of facilitatory concentrations of decamethonium on the storage and release of transmitter at the neuromuscular junction of the cat. J Pharmacol Exp Ther. 1970 Dec;175(3):664–672. [PubMed] [Google Scholar]
  4. Bowman W. C. Prejunctional and postjunctional cholinoceptors at the neuromuscular junction. Anesth Analg. 1980 Dec;59(12):935–943. [PubMed] [Google Scholar]
  5. Cull-Candy S. G., Lundh H., Thesleff S. Effects of botulinum toxin on neuromuscular transmission in the rat. J Physiol. 1976 Aug;260(1):177–203. doi: 10.1113/jphysiol.1976.sp011510. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Cull-Candy S. G., Miledi R., Trautmann A., Uchitel O. D. On the release of transmitter at normal, myasthenia gravis and myasthenic syndrome affected human end-plates. J Physiol. 1980 Feb;299:621–638. doi: 10.1113/jphysiol.1980.sp013145. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. DEL CASTILLO J., KATZ B. Quantal components of the end-plate potential. J Physiol. 1954 Jun 28;124(3):560–573. doi: 10.1113/jphysiol.1954.sp005129. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Galindo A. Prejunctional effect of curare: its relative importance. J Neurophysiol. 1971 Mar;34(2):289–301. doi: 10.1152/jn.1971.34.2.289. [DOI] [PubMed] [Google Scholar]
  9. Glavinović M. I. Presynaptic action of curare. J Physiol. 1979 May;290(2):499–506. doi: 10.1113/jphysiol.1979.sp012786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. HOREJSI J., SMETANA R. The isolation of gamma globulin from blood-serum by rivanol. Acta Med Scand. 1956 Jun 30;155(1):65–70. doi: 10.1111/j.0954-6820.1956.tb14351.x. [DOI] [PubMed] [Google Scholar]
  11. Hubbard J. I. Microphysiology of vertebrate neuromuscular transmission. Physiol Rev. 1973 Jul;53(3):674–723. doi: 10.1152/physrev.1973.53.3.674. [DOI] [PubMed] [Google Scholar]
  12. Hubbard J. I., Wilson D. F., Miyamoto M. Reduction of transmitter release by D-tubocurarine. Nature. 1969 Aug 2;223(5205):531–533. doi: 10.1038/223531a0. [DOI] [PubMed] [Google Scholar]
  13. Hubbard J. I., Wilson D. F. Neuromuscular transmission in a mammalian preparation in the absence of blocking drugs and the effect of D-tubocurarine. J Physiol. 1973 Jan;228(2):307–325. doi: 10.1113/jphysiol.1973.sp010088. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Lambert E. H., Elmqvist D. Quantal components of end-plate potentials in the myasthenic syndrome. Ann N Y Acad Sci. 1971 Sep 15;183:183–199. doi: 10.1111/j.1749-6632.1971.tb30750.x. [DOI] [PubMed] [Google Scholar]
  15. Lang B., Newsom-Davis J., Wray D., Vincent A., Murray N. Autoimmune aetiology for myasthenic (Eaton-Lambert) syndrome. Lancet. 1981 Aug 1;2(8240):224–226. doi: 10.1016/s0140-6736(81)90474-8. [DOI] [PubMed] [Google Scholar]
  16. Magleby K. L., Pallotta B. S., Terrar D. A. The effect of (+)-tubocurarine on neuromuscular transmission during repetitive stimulation in the rat, mouse, and frog. J Physiol. 1981 Mar;312:97–113. doi: 10.1113/jphysiol.1981.sp013618. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Miyamoto M. D. Binomial analysis of quantal transmitter release at glycerol treated frog neuromuscular junctions. J Physiol. 1975 Aug;250(1):121–142. doi: 10.1113/jphysiol.1975.sp011045. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Molenaar P. C., Newsom-Davis J., Polak R. L., Vincent A. Eaton-Lambert syndrome: acetylcholine and choline acetyltransferase in skeletal muscle. Neurology. 1982 Sep;32(9):1061–1065. doi: 10.1212/wnl.32.9.1061. [DOI] [PubMed] [Google Scholar]
  19. Wray D. Prolonged exposure to acetylcholine: noise analysis and channel inactivation in cat tenuissimus muscle. J Physiol. 1981 Jan;310:37–56. doi: 10.1113/jphysiol.1981.sp013536. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES