Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Sep;342:603–614. doi: 10.1113/jphysiol.1983.sp014871

Membrane properties of cat sensory neurones with chemoreceptor and baroreceptor endings.

C Belmonte, R Gallego
PMCID: PMC1193979  PMID: 6631751

Abstract

The properties of chemoreceptor and baroreceptor neurones in the petrosal ganglion of the cat were examined in vitro with intracellular micro-electrodes. Chemoreceptor neurones with myelinated axons (average conduction velocity, 11 m/s) showed action potentials with a hump on the falling phase, followed by a prolonged after-hyperpolarization (average duration, 260 ms). The duration of the hump present in the action potential of chemoreceptor neurones was positively correlated with the duration of the after-hyperpolarization. In response to prolonged depolarization, chemoreceptor neurones showed only one or a few action potentials at the beginning of the depolarization. Two types of baroreceptors neurones with myelinated axons were found: fast (F) baroreceptors (average conduction velocity, 33 m/s) and slow (S) baroreceptors (average conduction velocity, 10 m/s). F baroreceptors had action potentials without a hump followed by a short after-hyperpolarization (average duration, 43 ms), while S baroreceptors had spikes similar to those found in chemoreceptors except for a shorter hyperpolarization (average duration, 145 ms). Both types of baroreceptor neurones fired repetitively throughout prolonged depolarization. It is concluded that, in the petrosal ganglion, primary sensory neurones originating a given type of sensory terminal share a particular set of electrophysiological properties.

Full text

PDF
603

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrett E. F., Barret J. N. Separation of two voltage-sensitive potassium currents, and demonstration of a tetrodotoxin-resistant calcium current in frog motoneurones. J Physiol. 1976 Mar;255(3):737–774. doi: 10.1113/jphysiol.1976.sp011306. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Boyd I. A., Kalu K. U. Scaling factor relating conduction velocity and diameter for myelinated afferent nerve fibres in the cat hind limb. J Physiol. 1979 Apr;289:277–297. doi: 10.1113/jphysiol.1979.sp012737. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Czéh G., Gallego R., Kudo N., Kuno M. Evidence for the maintenance of motoneurone properties by muscle activity. J Physiol. 1978 Aug;281:239–252. doi: 10.1113/jphysiol.1978.sp012419. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Czéh G., Kudo N., Kuno M. Membrane properties and conduction velocity in sensory neurones following central or peripheral axotomy. J Physiol. 1977 Aug;270(1):165–180. doi: 10.1113/jphysiol.1977.sp011944. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Dichter M. A., Fischbach G. D. The action potential of chick dorsal root ganglion neurones maintained in cell culture. J Physiol. 1977 May;267(2):281–298. doi: 10.1113/jphysiol.1977.sp011813. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EYZAGUIRRE C., LEWIN J. Effect of different oxygen tensions on the carotid body in vitro. J Physiol. 1961 Dec;159:238–250. doi: 10.1113/jphysiol.1961.sp006805. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Fidone S. J., Sato A. A study of chemoreceptor and baroreceptor A and C-fibres in the cat carotid nerve. J Physiol. 1969 Dec;205(3):527–548. doi: 10.1113/jphysiol.1969.sp008981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Gallego R., Eyzaguirre C. Membrane and action potential characteristics of A and C nodose ganglion cells studied in whole ganglia and in tissue slices. J Neurophysiol. 1978 Sep;41(5):1217–1232. doi: 10.1152/jn.1978.41.5.1217. [DOI] [PubMed] [Google Scholar]
  9. Gallego R., Eyzaguirre C., Monti-Bloch L. Thermal and osmotic responses of arterial receptors. J Neurophysiol. 1979 May;42(3):665–680. doi: 10.1152/jn.1979.42.3.665. [DOI] [PubMed] [Google Scholar]
  10. Gallego R. The ionic basis of action potentials in petrosal ganglion cells of the cat. J Physiol. 1983 Sep;342:591–602. doi: 10.1113/jphysiol.1983.sp014870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Görke K., Pierau F. K. Spike potentials and membrane properties of dorsal root ganglion cells in pigeons. Pflugers Arch. 1980 Jul;386(1):21–28. doi: 10.1007/BF00584182. [DOI] [PubMed] [Google Scholar]
  12. ITO M., SAIGA M. The mode of impulse conduction through the spinal ganglion. Jpn J Physiol. 1959 Mar 25;9(1):33–42. doi: 10.2170/jjphysiol.9.33. [DOI] [PubMed] [Google Scholar]
  13. ITO M. The electrical activity of spinal ganglion cells investigated with intracellular microelectrodes. Jpn J Physiol. 1957 Dec 20;7(4):297–323. doi: 10.2170/jjphysiol.7.297. [DOI] [PubMed] [Google Scholar]
  14. Llinás R., Yarom Y. Electrophysiology of mammalian inferior olivary neurones in vitro. Different types of voltage-dependent ionic conductances. J Physiol. 1981 Jun;315:549–567. doi: 10.1113/jphysiol.1981.sp013763. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. McQueen D. S. Effects of acetylcholine and sodium cyanide on cat carotid baroreceptors. Br J Pharmacol. 1980 Jul;69(3):433–440. doi: 10.1111/j.1476-5381.1980.tb07032.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Pineda A., Maxwell D. S., Kruger L. The fine structure of neurons and satellite cells in the trigeminal ganglion of cat and monkey. Am J Anat. 1967 Nov;121(3):461–487. doi: 10.1002/aja.1001210304. [DOI] [PubMed] [Google Scholar]
  17. Ransom B. R., Holz R. W. Ionic determinants of excitability in cultured mouse dorsal root ganglion and spinal cord cells. Brain Res. 1977 Nov 18;136(3):445–453. doi: 10.1016/0006-8993(77)90069-5. [DOI] [PubMed] [Google Scholar]
  18. Stensaas L. J., Fidone S. J. An ultrastructural study of cat petrosal ganglia: a search for autonomic ganglion cells. Brain Res. 1977 Mar 18;124(1):29–39. doi: 10.1016/0006-8993(77)90861-7. [DOI] [PubMed] [Google Scholar]
  19. Yoshida S., Matsuda Y., Samejima A. Tetrodotoxin-resistant sodium and calcium components of action potentials in dorsal root ganglion cells of the adult mouse. J Neurophysiol. 1978 Sep;41(5):1096–1106. doi: 10.1152/jn.1978.41.5.1096. [DOI] [PubMed] [Google Scholar]
  20. Yoshida S., Matsuda Y. Studies on sensory neurons of the mouse with intracellular-recording and horseradish peroxidase-injection techniques. J Neurophysiol. 1979 Jul;42(4):1134–1145. doi: 10.1152/jn.1979.42.4.1134. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES