Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Aug;341:153–167. doi: 10.1113/jphysiol.1983.sp014798

Time course of release of catecholamine and other granular contents from perifused adrenal chromaffin cells of guinea-pig.

S Ito
PMCID: PMC1195327  PMID: 6620178

Abstract

Experiments were carried out to investigate the time course of the release of catecholamine, dopamine-beta-hydroxylase (DBH) and adenine nucleotides from isolated chromaffin cells of guinea-pig adrenal gland. When the isolated chromaffin cells were incubated with medium containing acetylcholine (ACh) (0.1 mM), veratridine (0.1 mM) or scorpion (Leiurus quinquestriatus) venom, (10 micrograms/ml.), catecholamine was released into the medium. Catecholamine secretion induced by veratridine or scorpion venom was inhibited by tetrodotoxin (1 microM) but not by atropine (0.1 mM) plus hexamethonium (0.1 mM). On the other hand, the secretory response to ACh was abolished by the cholinergic blocking drugs but not by tetrodotoxin. DBH was released together with catecholamine into the medium in which cells were suspended with these drugs. The ratio of catecholamine (n-mole) to DBH activity (n-mole/hr) appearing in the supernatant was 7.08 +/- 0.55, 6.60 +/- 0.27 and 8.91 +/- 0.47 for ACh, veratridine and scorpion venom, respectively. These values were close to that found in the lysate of chromaffin granules obtained from guinea-pig adrenal glands (7.37 +/- 0.39). The application of ACh or veratridine to perifused chromaffin cells was found to cause a parallel increase in catecholamine and DBH secretion in the perifusion medium without corresponding amounts of phenylethanolamine-N-methyltransferase leakage. However, DBH secretion tended to last for a longer period than catecholamine secretion. Adenine nucleotides were released from perifused chromaffin cells together with catecholamine, by ACh and veratridine. ATP added to the perifusion medium was metabolized to ADP and AMP, of which the ratio (ATP, 21.6%; ADP, 34%; AMP, 17.9%) was close to those of adenine nucleotides released from the cells. The secretion of adenine nucleotides induced by both secretagogues ceased much faster than the catecholamine secretion, so that molar ratio of catecholamine to adenine nucleotides was gradually increased during and after stimulation. The results indicate that catecholamine secretion is accompanied with a simultaneous release of DBH and ATP from adrenal chromaffin cells. Therefore, it is suggested that the delayed output of DBH, unlike catecholamine secretion, in perfused adrenal glands results from the presence of a diffusion barrier for this protein. The releasable secretory granules of isolated chromaffin cells are suggested to be heterogeneous with respect to the ratio of catecholamine to ATP.

Full text

PDF
153

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ANTON A. H., SAYRE D. F. A study of the factors affecting the aluminum oxide-trihydroxyindole procedure for the analysis of catecholamines. J Pharmacol Exp Ther. 1962 Dec;138:360–375. [PubMed] [Google Scholar]
  2. AXELROD J. Purification and properties of phenylethanolamine-N-methyl transferase. J Biol Chem. 1962 May;237:1657–1660. [PubMed] [Google Scholar]
  3. Aberer W., Kostron H., Huber E., Winkler H. A characterization of the nucleotide uptake of chromaffin granules of bovine adrenal medulla. Biochem J. 1978 Jun 15;172(3):353–360. doi: 10.1042/bj1720353b. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Aberg H. E., Hansson H. E., Wetterberg L., Ross S. B., Frödén O. Dopamine-beta-hydroxylase in human lymph. Life Sci. 1974 Jan 1;14(1):65–71. doi: 10.1016/0024-3205(74)90246-x. [DOI] [PubMed] [Google Scholar]
  5. BLASCHKO H., BORN G. V., D'IORIO A., EADE N. R. Observations on the distribution of catechol amines and adenosinetriphosphate in the bovine adrenal medulla. J Physiol. 1956 Sep 27;133(3):548–557. doi: 10.1113/jphysiol.1956.sp005607. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Banks P. The release of adenosine triphosphate catabolites during the secretion of catecholamines by bovine adrenal medulla. Biochem J. 1966 Nov;101(2):536–541. doi: 10.1042/bj1010536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Blaschko H., Comline R. S., Schneider F. H., Silver M., Smith A. D. Secretion of a chromaffin granule protein, chromogranin, from the adrenal gland after splanchnic stimulation. Nature. 1967 Jul 1;215(5096):58–59. doi: 10.1038/215058a0. [DOI] [PubMed] [Google Scholar]
  8. Bolstad G., Helle K. B., Serck-Hanssen G. Heterogeneity in the adrenomedullary storage of catecholamines, ATP, calcium and releasable dopamine beta-hydroxylase activity. J Auton Nerv Syst. 1980 Dec;2(4):337–354. doi: 10.1016/0165-1838(80)90032-6. [DOI] [PubMed] [Google Scholar]
  9. Cubeddu L., Barnes E. M., Langer S. Z., Weiner N. Release of norepinephrine and dopamine-beta-hydroxylase by nerve stimulation. I. Role of neuronal and extraneuronal uptake and of alpha presynaptic receptors. J Pharmacol Exp Ther. 1974 Sep;190(3):431–450. [PubMed] [Google Scholar]
  10. Dixon W. R., Garcia A. G., Kirpekar S. M. Release of catecholamines and dopamine beta-hydroxylase from the perfused adrenal gland of the cat. J Physiol. 1975 Jan;244(3):805–824. doi: 10.1113/jphysiol.1975.sp010827. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Douglas W. W., Poisner A. M. Evidence that the secreting adrenal chromaffin cell releases catecholamines directly from ATP-rich granules. J Physiol. 1966 Mar;183(1):236–248. doi: 10.1113/jphysiol.1966.sp007863. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Douglas W. W., Poisner A. M. On the relation between ATP splitting and secretion in the adrenal chromaffin cell: extrusion of ATP (unhydrolysed) during release of catecholamines. J Physiol. 1966 Mar;183(1):249–256. doi: 10.1113/jphysiol.1966.sp007864. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Douglas W. W., Poisner A. M., Rubin R. P. Efflux of adenine nucleotides from perfused adrenal glands exposed to nicotine and other chromaffin cell stimulants. J Physiol. 1965 Jul;179(1):130–137. doi: 10.1113/jphysiol.1965.sp007652. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Edwards A. V., Furness P. N., Helle K. B. Adrenal medullary responses to stimulation of the splanchnic nerve in the conscious calf. J Physiol. 1980 Nov;308:15–27. doi: 10.1113/jphysiol.1980.sp013458. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. HILLARP N. A. Adenosinephosphates and inorganic phosphate in the adrenaline and noradrenaline containing granules of the adrenal medulla. Acta Physiol Scand. 1958 Jun 2;42(3-4):321–332. doi: 10.1111/j.1748-1716.1958.tb01566.x. [DOI] [PubMed] [Google Scholar]
  16. HILLARP N. A. Different pools of catecholamines stored in the adrenal medulla. Acta Physiol Scand. 1960 Sep 30;50:8–22. doi: 10.1111/j.1748-1716.1960.tb02068.x. [DOI] [PubMed] [Google Scholar]
  17. Hochman J., Perlman R. L. Catecholamine secretion by isolated adrenal cells. Biochim Biophys Acta. 1976 Jan 14;421(1):168–175. doi: 10.1016/0304-4165(76)90180-x. [DOI] [PubMed] [Google Scholar]
  18. Ito S., Nakazato Y., Ohga A. Exocytotic release of catecholamine from perfused adrenal gland of guinea-pig induced by veratridine. Br J Pharmacol. 1980 Dec;70(4):527–535. doi: 10.1111/j.1476-5381.1980.tb09771.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Ito S., Nakazato Y., Ohga A. Further evidence for the involvement of Na+ channels in the release of adrenal catecholamine: the effect of scorpion venom and grayanotoxin I. Br J Pharmacol. 1981 Jan;72(1):61–67. doi: 10.1111/j.1476-5381.1981.tb09105.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ito S., Nakazato Y., Ohga A. Pharmacological evidence for the involvement of Na+ channels in the release of catecholamines from perfused adrenal glands. Br J Pharmacol. 1978 Mar;62(3):359–361. doi: 10.1111/j.1476-5381.1978.tb08468.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Ito S., Nakazato Y., Ohga A. The effect of veratridine on the release of catecholamines from the perfused adrenal gland. Br J Pharmacol. 1979 Feb;65(2):319–330. doi: 10.1111/j.1476-5381.1979.tb07833.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Jacobs T. P., Henry D. P., Johnson D. G., Williams R. H. Epinephrine and dopamine beta-hydroxylase secretion from bovine adrenal. Am J Physiol. 1978 Jun;234(6):E600–E605. doi: 10.1152/ajpendo.1978.234.6.E600. [DOI] [PubMed] [Google Scholar]
  23. Joh T. H., Goldstein M. Isolation and characterization of multiple forms of phenylethanolamine N-methyltransferase. Mol Pharmacol. 1973 Jan;9(1):117–129. [PubMed] [Google Scholar]
  24. KIRSHNER N., GOODALL M. The formation of adrenaline from noradrenaline. Biochim Biophys Acta. 1957 Jun;24(3):658–659. doi: 10.1016/0006-3002(57)90271-8. [DOI] [PubMed] [Google Scholar]
  25. Kilpatrick D. L., Slepetis R., Kirshner N. Ion channels and membrane potential in stimulus-secretion coupling in adrenal medulla cells. J Neurochem. 1981 Mar;36(3):1245–1255. doi: 10.1111/j.1471-4159.1981.tb01724.x. [DOI] [PubMed] [Google Scholar]
  26. Kirshner N., Sage H. J., Smith W. J. Mechanism of secretion from the adrenal medulla. II. Release of catecholamines and storage vesicle protein in response to chemical stimulation. Mol Pharmacol. 1967 May;3(3):254–265. [PubMed] [Google Scholar]
  27. Laduron P., Belpaire F. Tissue fractionation and catecholamines. II. Intracellular distribution patterns of tyrosine hydroxylase, dopa decarboxylase, dopamine-beta-hydroxylase, phenylethanolamine N-methyltransferase and monoamine oxidase in adrenal medulla. Biochem Pharmacol. 1968 Jul;17(7):1127–1140. doi: 10.1016/0006-2952(68)90048-8. [DOI] [PubMed] [Google Scholar]
  28. Lagercrantz H., Fried G., Dahlin I. An attempt to estimate the in vivo concentrations of noradrenaline and ATP in sympathetic large dense core nerve vesicles. Acta Physiol Scand. 1975 May;94(1):136–138. doi: 10.1111/j.1748-1716.1975.tb05871.x. [DOI] [PubMed] [Google Scholar]
  29. Lastowecka A., Trifaró J. M. The effect of sodium and calcium ions on the release of catecholamines from the adrenal medulla: sodium deprivation induces release by exocytosis in the absence of extracellular calcium. J Physiol. 1974 Feb;236(3):681–705. doi: 10.1113/jphysiol.1974.sp010460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Ledbetter F. H., Kirshner N. Quantitative correlation between secretion and cellular content of catecholamines and dopamine-beta-hydroxylase in cultures of adrenal medulla cells. Biochem Pharmacol. 1981 Dec 1;30(23):3246–3249. doi: 10.1016/0006-2952(81)90526-8. [DOI] [PubMed] [Google Scholar]
  31. Molinoff P. B., Weinshilboum R., Axelrod J. A sensitive enzymatic assay for dopamine- -hydroxylase. J Pharmacol Exp Ther. 1971 Sep;178(3):425–431. [PubMed] [Google Scholar]
  32. Muscholl E., Racke K., Ritzel H. Facilitation by 'low sodium-urea' medium of the washout of dopamine beta-hydroxylase released by potassium ions from the perfused rabbit heart. Neuroscience. 1980;5(2):453–457. doi: 10.1016/0306-4522(80)90120-7. [DOI] [PubMed] [Google Scholar]
  33. Ngai S. H., Dairman W., Marchelle M., Spector S. Dopamine-beta-hydroxylase in dog lymph--effect of sympathetic activation. Life Sci. 1974 Jun 16;14(12):2431–2439. doi: 10.1016/0024-3205(74)90139-8. [DOI] [PubMed] [Google Scholar]
  34. Peer L. J., Winkler H., Snider S. R., Gibb J. W., Baumgartner H. Synthesis of nucleotides in adrenal medulla and their uptake into chromaffin granules. Biochem Pharmacol. 1976 Feb 1;25(3):311–315. doi: 10.1016/0006-2952(76)90220-3. [DOI] [PubMed] [Google Scholar]
  35. Smith A. D., Winkler H. A simple method for the isolation of adrenal chromaffin granules on a large scale. Biochem J. 1967 May;103(2):480–482. doi: 10.1042/bj1030480. [DOI] [PMC free article] [PubMed] [Google Scholar]
  36. Sorimachi M., Yoshida K. Exocytotic release of catecholamines and dopamine-beta-hydroxylase from the perfused adrenal gland of the rabbit and cat. Br J Pharmacol. 1979 Jan;65(1):117–125. doi: 10.1111/j.1476-5381.1979.tb17340.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Terland O., Flatmark T., Kryvi H. Isolation and characterization of noradrenalin storage granules of bovine adrenal medulla. Biochim Biophys Acta. 1979 Jun 2;553(3):460–468. doi: 10.1016/0005-2736(79)90301-8. [DOI] [PubMed] [Google Scholar]
  38. Unsicker K., Habura-Flüh O., Zwarg U. Different types of small granule-containing cells and neurons in the guinea-pig adrenal medulla. Cell Tissue Res. 1978 May 18;189(1):109–130. doi: 10.1007/BF00223124. [DOI] [PubMed] [Google Scholar]
  39. Uvnäs B., Aborg C. H. In vitro studies on a cation dependent catecholamine release from a two-compartment storage in bovine adrenal medullary granules. Acta Physiol Scand. 1980 Aug;109(4):355–362. doi: 10.1111/j.1748-1716.1980.tb06607.x. [DOI] [PubMed] [Google Scholar]
  40. Uvnäs B., Aborg C. H. The ability of ATP-free granule material from bovine adrenal medulla to bind inorganic cations and biogenic amines. Acta Physiol Scand. 1977 Apr;99(4):476–483. doi: 10.1111/j.1748-1716.1977.tb10401.x. [DOI] [PubMed] [Google Scholar]
  41. Van Dyke K., Robinson R., Urquilla P., Smith D., Taylor M., Trush M., Wilson M. An analysis of nucleotides and catecholamines in bovine medullary granules by anion exchange high pressure liquid chromatography and fluorescence. Evidence that most of the catecholamines in chromaffin granules are stored without associated ATP. Pharmacology. 1977;15(5):377–391. doi: 10.1159/000136714. [DOI] [PubMed] [Google Scholar]
  42. Van Orden L. S., Burke J. P., Redick J. A., Rybarczyk K. E., Van Orden D. E., Baker H. A., Hartman B. K. Immunocytochemical evidence for particulate localization of phenylethanolamine-N-methyltransferase in adrenal medulla. Neuropharmacology. 1977 Feb;16(2):129–133. doi: 10.1016/0028-3908(77)90060-0. [DOI] [PubMed] [Google Scholar]
  43. Viveros O. H., Diliberto E. J., Jr, Hazum E., Chang K. J. Enkephalins as possible adrenomedullary hormones: storage, secretion, and regulation of synthesis. Adv Biochem Psychopharmacol. 1980;22:191–204. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES