Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Aug;341:441–452. doi: 10.1113/jphysiol.1983.sp014815

Modification by diet and environmental temperature of enterocyte function in piglet intestine.

M J Dauncey, D L Ingram, P S James, M W Smith
PMCID: PMC1195343  PMID: 6620186

Abstract

Intestinal morphology, enterocyte life span and alanine transport have been studied in the small intestine of piglets fed different amounts of food at high and low environmental temperatures. Villus height and crypt depth were both greater in pigs maintained on a high energy intake. Environmental temperature produced negligible effects on intestinal structure. Enterocyte life span increased from 45 h in pigs kept at 35 degrees C to about 70 h in animals living at 10 degrees C. A low energy intake prolonged enterocyte life span at an environmental temperature of 10 degrees C. The Na-dependent fraction of alanine uptake, judged by analysis of autoradiographs and by measurement of alanine-dependent short-circuit current, was greater in intestines taken from pigs maintained on a restricted diet. This effect, which appeared to be due to changes in the number of carriers (Jm) rather than the apparent affinity of the carrier for the amino acid (Km) was most noticeable using intestines taken from pigs kept at 10 degrees C. The Na-independent fraction of alanine uptake remained unchanged either by alterations in diet or in the environmental temperature at which pigs were kept. Restricting the diet of pigs at low environmental temperature leads to a relative increase in the capacity of the intestine to absorb alanine through an Na-dependent process. This increase appears to be caused by an extension of enterocyte life span rather than by any change in the time of onset or rate of expression of carrier function in a single enterocyte.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Barrand M. A., Dauncey M. J., Ingram D. L. Changes in plasma noradrenaline and adrenaline associated with central and peripheral thermal stimuli in the pig. J Physiol. 1981 Jul;316:139–152. doi: 10.1113/jphysiol.1981.sp013778. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Blatchford D., Holzbauer M., Ingram D. L., Sharman D. F. Responses of the pituitary-adrenal system of the pig to environmental changes and drugs. Br J Pharmacol. 1978 Feb;62(2):241–254. doi: 10.1111/j.1476-5381.1978.tb08452.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Clarke R. M. Control of intestinal epithelial replacement: lack of evidence for a tissue-specific blood-borne factor. Cell Tissue Kinet. 1974 May;7(3):241–250. doi: 10.1111/j.1365-2184.1974.tb00904.x. [DOI] [PubMed] [Google Scholar]
  4. Debnam E. S., Levin R. J. Influence of specific dietary sugars on the jejunal mechanisms for glucose, galactose, and alpha-methyl glucoside absorption: evidence for multiple sugar carriers. Gut. 1976 Feb;17(2):92–99. doi: 10.1136/gut.17.2.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Guidotti G. G., Borghetti A. F., Gazzola G. C. The regulation of amino acid transport in animal cells. Biochim Biophys Acta. 1978 Dec 15;515(4):329–366. doi: 10.1016/0304-4157(78)90009-6. [DOI] [PubMed] [Google Scholar]
  6. Henriques de Jesus C., Smith M. W. Sodium transport by the small intestine of new-born and suckling pigs. J Physiol. 1974 Nov;243(1):211–224. doi: 10.1113/jphysiol.1974.sp010750. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. King I. S., Sepúlveda F. V., Smith M. W. Cellular distribution of neutral and basic amino acid transport systems in rabbit ileal mucosa. J Physiol. 1981;319:355–368. doi: 10.1113/jphysiol.1981.sp013913. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. LEBLOND C. P., CARRIERE R. The effect of growth hormone and thyroxine on the mitotic rate of the intestinal mucosa of the rat. Endocrinology. 1955 Mar;56(3):261–266. doi: 10.1210/endo-56-3-261. [DOI] [PubMed] [Google Scholar]
  9. Levine G. M., Deren J. J., Steiger E., Zinno R. Role of oral intake in maintenance of gut mass and disaccharide activity. Gastroenterology. 1974 Nov;67(5):975–982. [PubMed] [Google Scholar]
  10. Macari M., Ingram D. L., Dauncey M. J. Influence of thermal and nutritional acclimatization on body temperatures and metabolic rate. Comp Biochem Physiol A Comp Physiol. 1983;74(3):549–553. doi: 10.1016/0300-9629(83)90546-7. [DOI] [PubMed] [Google Scholar]
  11. McManus J. P., Isselbacher K. J. Effect of fasting versus feeding on the rat small intestine. Morphological, biochemical, and functional differences. Gastroenterology. 1970 Aug;59(2):214–221. [PubMed] [Google Scholar]
  12. Neale R. J., Wiseman G. The use of dietary-restricted rat intestine for active transport studies. J Physiol. 1969 Nov;205(1):159–178. doi: 10.1113/jphysiol.1969.sp008958. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Paterson J. Y., Sepúlveda F. V., Smith M. W. A sodium-indpendent low affinity transport system for neutral amino acids in rabbit ileal mucosa. J Physiol. 1980 Jan;298:333–346. doi: 10.1113/jphysiol.1980.sp013084. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Paterson J. Y., Sepúlveda F. V., Smith M. W. Distribution of transported amino acid within rabbit ileal mucosa. J Physiol. 1982 Oct;331:523–535. doi: 10.1113/jphysiol.1982.sp014388. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Paterson J. Y., Sepúlveda F. V., Smith M. W. Stoichiometry versus coupling ratio in the cotransport of Na and different neutral amino acids. Biochim Biophys Acta. 1980 Dec 12;603(2):288–297. doi: 10.1016/0005-2736(80)90375-2. [DOI] [PubMed] [Google Scholar]
  16. Syme G., Levin R. J. The effects of hypothyroidism and fasting on electrogenic amino acid transfer: possible evidence for multiple neutral amino acid carrier systems in rat jejunum. Biochim Biophys Acta. 1977 Feb 4;464(3):620–628. doi: 10.1016/0005-2736(77)90036-0. [DOI] [PubMed] [Google Scholar]
  17. Syme G., Smith M. W. Intestinal adaptation of protein deficiency. Cell Biol Int Rep. 1982 Jun;6(6):573–578. doi: 10.1016/0309-1651(82)90181-3. [DOI] [PubMed] [Google Scholar]
  18. Syme G. The effect of protein-deficient isoenergetic diets on the growth of rat jejunal mucosa. Br J Nutr. 1982 Jul;48(1):25–36. doi: 10.1079/bjn19820084. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES