Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Aug;341:655–670. doi: 10.1113/jphysiol.1983.sp014831

Chemical transmission in the rat interpeduncular nucleus in vitro.

D A Brown, R J Docherty, J V Halliwell
PMCID: PMC1195356  PMID: 6137562

Abstract

We have used a rat brain-slice preparation to study the effects of some cholinomimetic and amino acid agonists and antagonists on the discharge frequency of neurones in the interpeduncular nucleus (i.p.n.), and on the response of these neurones to electrical stimulation of their main excitatory input, the fasciculus retroflexus of Meynert (f.r.m.). A high proportion of i.p.n. neurones were excited by carbachol, acetylcholine (ACh) and muscarine, but methacholine was less effective. The amino acids L-glutamate and L-aspartate were highly effective stimulants of i.p.n. neurones. The responses to ACh or carbachol were greatly reduced by the nicotinic blocking agents hexamethonium, d-tubocurarine and mecamylamine but only slightly reduced by atropine. The response to muscarine was abolished by low doses of atropine. Alpha-Bungarotoxin did not block the response of i.p.n. neurones to f.r.m. stimulation or to cholinomimetic agonists. The response of i.p.n. neurones to f.r.m. stimulation was not appreciably affected by high doses of nicotinic antagonists or atropine nor was there any enhancement of the response by physostigmine. The amino acid antagonists gamma-D-glutamylglycine (gamma DGG) and 2-amino phosphonovalerate (2-APV) were effective blockers of the response to f.r.m. stimulation and preferentially reduced responses to aspartate while having little effect on responses to glutamate or cholinomimetic agonists. It is concluded that ACh is an unlikely candidate for transmitter in this pathway despite abundant neurochemical evidence in its favour. It is more likely that the transmitter is an excitatory amino acid, probably an aspartate-like substance.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akagi K., Powell E. W. Differential projections of habenular nuclei. J Comp Neurol. 1968 Feb;132(2):263–274. doi: 10.1002/cne.901320204. [DOI] [PubMed] [Google Scholar]
  2. Arimatsu Y., Seto A., Amano T. Localization of alpha-bungarotoxin binding sites in mouse brain by light and electron microscopic autoradiography. Brain Res. 1978 May 19;147(1):165–169. doi: 10.1016/0006-8993(78)90782-5. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A., Fumagalli L. Department of Pharmacology, The School of Pharmacy, University of London, London, Great Britain. Brain Res. 1977 Jun 24;129(1):165–168. doi: 10.1016/0006-8993(77)90981-7. [DOI] [PubMed] [Google Scholar]
  4. Brown D. A. Neurotoxins and the ganglionic (C6) type of nicotinic receptor. Adv Cytopharmacol. 1979;3:225–230. [PubMed] [Google Scholar]
  5. Brownstein M. J., Mroz E. A., Kizer J. S., Palkovits M., Leeman S. E. Regional distribution of substance P in the brain of the rat. Brain Res. 1976 Nov 5;116(2):299–305. doi: 10.1016/0006-8993(76)90907-0. [DOI] [PubMed] [Google Scholar]
  6. Brownstein M., Kobayashi R., Palkovits M., Saavedra J. M. Choline acetyltransferase levels in diencephalic nuclei of the rat. J Neurochem. 1975 Jan;24(1):35–38. doi: 10.1111/j.1471-4159.1975.tb07624.x. [DOI] [PubMed] [Google Scholar]
  7. Cuello A. C., Emson P. C., Paxinos G., Jessell T. Substance P containing and cholinergic projections from the habenula. Brain Res. 1978 Jun 30;149(2):413–429. doi: 10.1016/0006-8993(78)90484-5. [DOI] [PubMed] [Google Scholar]
  8. Curtis D. R., Ryall R. W. The excitation of Renshaw cells by cholinomimetics. Exp Brain Res. 1966;2(1):49–65. doi: 10.1007/BF00234360. [DOI] [PubMed] [Google Scholar]
  9. Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982 Mar 11;235(2):378–386. doi: 10.1016/0006-8993(82)91017-4. [DOI] [PubMed] [Google Scholar]
  10. Davies J., Watkins J. C. Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with gamma-D(and L)-glutamylglycine. Brain Res. 1981 Feb 9;206(1):172–177. doi: 10.1016/0006-8993(81)90111-6. [DOI] [PubMed] [Google Scholar]
  11. Gottesfeld Z., Jacobowitz D. M. Cholinergic projection of the diagonal band to the interpeduncular nucleus of the rat brain. Brain Res. 1978 Nov 10;156(2):329–332. doi: 10.1016/0006-8993(78)90513-9. [DOI] [PubMed] [Google Scholar]
  12. Gähwiler B. H., Dreifuss J. J. Multiple actions of acetylcholine on hippocampal pyramidal cells in organotypic explant cultures. Neuroscience. 1982 May;7(5):1243–1256. doi: 10.1016/0306-4522(82)91131-9. [DOI] [PubMed] [Google Scholar]
  13. Harvey J. A., Scholfield C. N., Brown D. A. Evoked surface-positive potentials in isolated mammalian olfactory cortex. Brain Res. 1974 Aug 16;76(2):235–245. doi: 10.1016/0006-8993(74)90457-0. [DOI] [PubMed] [Google Scholar]
  14. Hattori T., McGeer E. G., Singh V. K., McGeer P. L. Cholinergic synapse of the interpeduncular nucleus. Exp Neurol. 1977 Jun;55(3 Pt 1):666–679. doi: 10.1016/0014-4886(77)90292-8. [DOI] [PubMed] [Google Scholar]
  15. Herkenham M., Nauta W. J. Afferent connections of the habenular nuclei in the rat. A horseradish peroxidase study, with a note on the fiber-of-passage problem. J Comp Neurol. 1977 May 1;173(1):123–146. doi: 10.1002/cne.901730107. [DOI] [PubMed] [Google Scholar]
  16. Herkenham M., Nauta W. J. Efferent connections of the habenular nuclei in the rat. J Comp Neurol. 1979 Sep 1;187(1):19–47. doi: 10.1002/cne.901870103. [DOI] [PubMed] [Google Scholar]
  17. Hong J. S., Costa E., Yang H. Y. Effects of habenular lesions on the substance P content of various brain regions. Brain Res. 1976 Dec 24;118(3):523–525. doi: 10.1016/0006-8993(76)90325-5. [DOI] [PubMed] [Google Scholar]
  18. Kataoka K., Nakamura Y., Hassler R. Habenulo-interpeduncular tract: a possible cholinergic neuron in rat brain. Brain Res. 1973 Nov 9;62(1):264–267. doi: 10.1016/0006-8993(73)90639-2. [DOI] [PubMed] [Google Scholar]
  19. King K. T., Ryall R. W. A re-evaluation of acetylcholine receptors on feline Renshaw cells. Br J Pharmacol. 1981 Jun;73(2):455–460. doi: 10.1111/j.1476-5381.1981.tb10442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Kobayashi R. M., Palkovits M., Hruska R. E., Rothschild R., Yamamura H. I. Regional distribution of muscarinic cholinergic receptors in rat brain. Brain Res. 1978 Oct 6;154(1):13–23. doi: 10.1016/0006-8993(78)91047-8. [DOI] [PubMed] [Google Scholar]
  21. Kuhar M. J., DeHaven R. N., Yamamura H. I., Rommel-Spacher H., Simon J. R. Further evidence for cholinergic habenulo-interpeduncular neurons: pharmacologic and functional characteristics. Brain Res. 1975 Oct 31;97(2):265–275. doi: 10.1016/0006-8993(75)90449-7. [DOI] [PubMed] [Google Scholar]
  22. Lake N. Studies of the habenulo-interpeduncular pathway in cats. Exp Neurol. 1973 Oct;41(1):113–132. doi: 10.1016/0014-4886(73)90184-2. [DOI] [PubMed] [Google Scholar]
  23. Lewis P. R., Shute C. C., Silver A. Confirmation from choline acetylase analyses of a massive cholinergic innervation to the rat hippocampus. J Physiol. 1967 Jul;191(1):215–224. doi: 10.1113/jphysiol.1967.sp008246. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Léránth C. S., Brownstein M., Záborszky L., Járányi Z. S., Palkovits M. Morphological and biochemical changes in the rat interpeduncular nucleus following the transection of the habenulo-interpeduncular tract. Brain Res. 1975 Nov 28;99(1):124–128. doi: 10.1016/0006-8993(75)90613-7. [DOI] [PubMed] [Google Scholar]
  25. Marchand E. R., Riley J. N., Moore R. Y. Interpeduncular nucleus afferents in the rat. Brain Res. 1980 Jul 14;193(2):339–352. doi: 10.1016/0006-8993(80)90169-9. [DOI] [PubMed] [Google Scholar]
  26. Mata M. M., Schrier B. K., Moore R. Y. Interpeduncular nucleus: differential effects of habenula lesions on choline acetyltransferase and glutamic acid decarboxylase. Exp Neurol. 1977 Dec;57(3):913–921. doi: 10.1016/0014-4886(77)90116-9. [DOI] [PubMed] [Google Scholar]
  27. Mizuno N., Nakamura Y. An electron microscope study of terminal degeneration of the fasciculus retroflexus Meynerti within the interpeduncular nucleus of the rabbit. Brain Res. 1974 Jan 4;65(1):165–169. doi: 10.1016/0006-8993(74)90343-6. [DOI] [PubMed] [Google Scholar]
  28. Mroz E. D., Brownstein M. J., Leeman S. E. Evidence for substance P in the habenulo-interpeduncular tract. Brain Res. 1976 Sep 3;113(3):597–599. doi: 10.1016/0006-8993(76)90061-5. [DOI] [PubMed] [Google Scholar]
  29. Ogata N. Effects of substance P on neurons of various brain regions in vitro. Brain Res. 1979 Nov 2;176(2):395–400. doi: 10.1016/0006-8993(79)90996-x. [DOI] [PubMed] [Google Scholar]
  30. Ogata N. Electrophysiology of mammalian hypothalamic and interpeduncular neurons in vitro. Experientia. 1979 Sep 15;35(9):1202–1203. doi: 10.1007/BF01963289. [DOI] [PubMed] [Google Scholar]
  31. Ogata N. Substance P causes direct depolarisation of neurones of guinea pig interpeduncular nucleus in vitro. Nature. 1979 Feb 8;277(5696):480–481. doi: 10.1038/277480a0. [DOI] [PubMed] [Google Scholar]
  32. Palkovits M., Saavedra J. M., Kobayashi R. M., Brownstein M. Choline acetyltransferase content of limbic nuclei of the rat. Brain Res. 1974 Oct 25;79(3):443–450. doi: 10.1016/0006-8993(74)90442-9. [DOI] [PubMed] [Google Scholar]
  33. Rotter A., Birdsall N. J., Field P. M., Raisman G. Muscarinic receptors in the central nervous system of the rat. II. Distribution of binding of [3H]propylbenzilylcholine mustard in the midbrain and hindbrain. Brain Res. 1979;180(2):167–183. doi: 10.1016/0165-0173(79)90003-1. [DOI] [PubMed] [Google Scholar]
  34. Sastry B. R. Effects of substance P, acetylcholine and stimulation of habenula on rat interpeduncular neuronal activity. Brain Res. 1978 Apr 14;144(2):404–410. doi: 10.1016/0006-8993(78)90168-3. [DOI] [PubMed] [Google Scholar]
  35. Sastry B. R., Zialkowski S. E., Hansen L. M., Kavanagh J. P., Evoy E. M. Acetylcholine release in interpeduncular nucleus following the stimulation of habenula. Brain Res. 1979 Mar 23;164:334–337. doi: 10.1016/0006-8993(79)90032-5. [DOI] [PubMed] [Google Scholar]
  36. Sorimachi M., Kataoka K. Choline uptake by nerve terminals: a sensitive and a specific marker of cholinergic innervation. Brain Res. 1974 Jun 7;72(2):350–353. doi: 10.1016/0006-8993(74)90880-4. [DOI] [PubMed] [Google Scholar]
  37. Valentino R. J., Dingledine R. Presynaptic inhibitory effect of acetylcholine in the hippocampus. J Neurosci. 1981 Jul;1(7):784–792. doi: 10.1523/JNEUROSCI.01-07-00784.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Vincent S. R., Staines W. A., McGeer E. G., Fibiger H. C. Transmitters contained in the efferents of the habenula. Brain Res. 1980 Aug 18;195(2):479–484. doi: 10.1016/0006-8993(80)90084-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES