Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1958 Aug;69(4):582–595. doi: 10.1042/bj0690582

Growth of Acetobacter suboxydans and the oxidation of aldoses, related carboxylic acids, and aldehydes

J A Fewster 1,*
PMCID: PMC1196601  PMID: 13572321

Full text

PDF
582

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ARCUS A. C., EDSON N. L. Polyol dehydrogenases. 2. The polyol dehydrogenases of Acetobacter suboxydans and Candida utilis. Biochem J. 1956 Nov;64(3):385–394. doi: 10.1042/bj0640385. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BAYNE S., FEWSTER J. A. The osones. Adv Carbohydr Chem. 1956;48(11):43–96. doi: 10.1016/s0096-5332(08)60116-2. [DOI] [PubMed] [Google Scholar]
  3. Butlin K. R. Aerobic breakdown of glucose by Bact. suboxydans. Biochem J. 1936 Oct;30(10):1870–1877. doi: 10.1042/bj0301870. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Butlin K. R. Enzyme system of Bact. suboxydans: Effect of acids and pH. Biochem J. 1938 Jul;32(7):1185–1190. doi: 10.1042/bj0321185. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Butlin K. R. The enzyme system of Bact. suboxydans: Variation of aerobic activity with age of culture. Biochem J. 1938 Mar;32(3):508–512. doi: 10.1042/bj0320508. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. CHELDELIN V. H., CUMMINS J. T., KING T. E. The biological oxidation of sorbitol. J Biol Chem. 1957 Jan;224(1):323–329. [PubMed] [Google Scholar]
  7. CHELDELIN V. H., KING T. E. Glucose oxidation and cytochromes in solubilized particulate fractions of Acetobacter suboxydans. J Biol Chem. 1957 Jan;224(1):579–590. [PubMed] [Google Scholar]
  8. CHELDELIN V. H., KING T. E. Glucose oxidation and cytochromes in solubilized particulate fractions of Acetobacter suboxydans. J Biol Chem. 1957 Jan;224(1):579–590. [PubMed] [Google Scholar]
  9. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  10. HAUGE J. G., KING T. E., CHELDELIN V. H. Oxidation of dihydroxyacetone via the pentose cycle in Acetobacter sub-oxydans. J Biol Chem. 1955 May;214(1):11–26. [PubMed] [Google Scholar]
  11. KATZNELSON H., TANENBAUM S. W., TATUM E. L. Glucose, gluconate, and 2-ketogluconate oxidation by Acetobacter melanogenum. J Biol Chem. 1953 Sep;204(1):43–59. [PubMed] [Google Scholar]
  12. KEILIN D., HARTREE E. F. Specificity of glucose oxidase (notatin). Biochem J. 1952 Jan;50(3):331–341. doi: 10.1042/bj0500331. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KING T. E., CHELDELIN V. H. Pyruvic carboxylase of Acetobacter suboxydase. J Biol Chem. 1954 Jun;208(2):821–831. [PubMed] [Google Scholar]
  14. KING T. E., CHELDELIN V. H. Sources of energy and the dinitrophenol effect in the growth of Acetobacter suboxydans. J Bacteriol. 1953 Nov;66(5):581–584. doi: 10.1128/jb.66.5.581-584.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KULKA D., WALKER T. K. The ketogenic activities of Acetobacter species in a glucose medium. Arch Biochem Biophys. 1954 May;50(1):169–179. doi: 10.1016/0003-9861(54)90019-3. [DOI] [PubMed] [Google Scholar]
  16. Keilin D., Hartree E. F. Properties of glucose oxidase (notatin): Addendum. Sedimentation and diffusion of glucose oxidase (notatin). Biochem J. 1948;42(2):221–229. [PMC free article] [PubMed] [Google Scholar]
  17. Keilin D., Hartree E. F. The use of glucose oxidase (notatin) for the determination of glucose in biological material and for the study of glucose-producing systems by manometric methods. Biochem J. 1948;42(2):230–238. [PMC free article] [PubMed] [Google Scholar]
  18. MONOD J., COHEN-BAZIRE G., COHN M. Sur la biosynthèse de la beta-galactosidase (lactase) chez Escherichia coli; la spécificité de l'induction. Biochim Biophys Acta. 1951 Nov;7(4):585–599. doi: 10.1016/0006-3002(51)90072-8. [DOI] [PubMed] [Google Scholar]
  19. RAO MRR Acetic acid bacteria. Annu Rev Microbiol. 1957;11:317–338. doi: 10.1146/annurev.mi.11.100157.001533. [DOI] [PubMed] [Google Scholar]
  20. RAO M. R. R., STOKES J. L. Utilization of ethanol by acetic acid bacteria. J Bacteriol. 1953 Dec;66(6):634–638. doi: 10.1128/jb.66.6.634-638.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. SMITH L. Bacterial cytochromes. Bacteriol Rev. 1954 Jun;18(2):106–130. doi: 10.1128/br.18.2.106-130.1954. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SMITH L. Bacterial cytochromes; difference spectra. Arch Biochem Biophys. 1954 Jun;50(2):299–314. doi: 10.1016/0003-9861(54)90045-4. [DOI] [PubMed] [Google Scholar]
  23. SOLS A., DE LA FUENTE G. On the substrate specificity of glucose oxidase. Biochim Biophys Acta. 1957 Apr;24(1):206–207. doi: 10.1016/0006-3002(57)90170-1. [DOI] [PubMed] [Google Scholar]
  24. STOKES F. N., CAMPBELL J. J. R. The oxidation of glucose and gluconic acid by dried cells of Pseudomonas aeruginosa. Arch Biochem. 1951 Jan;30(1):121–125. [PubMed] [Google Scholar]
  25. Tosic J. Oxidations in acetobacter. Biochem J. 1946;40(2):209–214. doi: 10.1042/bj0400209. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. VAN HEYNINGEN W. E., GLADSTONE G. P. The neurotoxin of Shigella shigae. III. The effect of iron on production of the toxin. Br J Exp Pathol. 1953 Apr;34(2):221–229. [PMC free article] [PubMed] [Google Scholar]
  27. WOOD W. A., SCHWERDT R. F. Carbohydrate oxidation by Pseudomonas fluorescens. I. The mechanism of glucose and gluconate oxidation. J Biol Chem. 1953 Apr;201(2):501–511. [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES