Full text
PDF










Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- CAREY N. H., GREVILLE G. D. Mitochondria from embryonic tissues of the chick. I. Preparation, characterization and some enzymic properties. Biochem J. 1959 Jan;71(1):159–166. doi: 10.1042/bj0710159. [DOI] [PMC free article] [PubMed] [Google Scholar]
- CHAPPELL J. B., PERRY S. V. Biochemical and osmotic properties of skeletal muscle mitochondria. Nature. 1954 Jun 5;173(4414):1094–1095. doi: 10.1038/1731094a0. [DOI] [PubMed] [Google Scholar]
- CHAPPELL J. B., PERRY S. V. The respiratory and adenosinetriphosphatase activities of skeletal-muscle mitochondria. Biochem J. 1953 Nov;55(4):586–595. doi: 10.1042/bj0550586. [DOI] [PMC free article] [PubMed] [Google Scholar]
- DE DUVE C., BERTHET J. Reproducibility of differential centrifugation experiments in tissue fractionation. Nature. 1953 Dec 19;172(4390):1142–1142. doi: 10.1038/1721142a0. [DOI] [PubMed] [Google Scholar]
- DOUNCE A. L., WITTER R. F., MONTY K. J., PATE S., COTTONE M. A. A method for isolating intact mitochondria and nuclei from the same homogenate, and the influence of mitochondrial destruction on the properties of cell nuclei. J Biophys Biochem Cytol. 1955 Mar;1(2):139–153. doi: 10.1083/jcb.1.2.139. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens F., Greville G. D. Metabolism of normal and tumour tissue: Ammonia and urea formation. Biochem J. 1933;27(4):1123–1133. doi: 10.1042/bj0271123. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens F., Greville G. D. Metabolism of normal and tumour tissue: Respiration in fructose and in sugar-free media. Biochem J. 1933;27(3):832–841. doi: 10.1042/bj0270832. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens F., Greville G. D. The metabolism of normal and tumour tissue: The conversion of fructose and glucose to lactic acid by embryonic tissues. Biochem J. 1932;26(4):1251–1269. doi: 10.1042/bj0261251. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens F., Simer F. The metabolism of normal and tumour tissue: The respiratory quotient in bicarbonate-media. Biochem J. 1931;25(4):985–993. doi: 10.1042/bj0250985. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dickens F., Simer F. The metabolism of normal and tumour tissue: The respiratory quotient, and the relationship of respiration to glycolysis. Biochem J. 1930;24(5):1301–1326. doi: 10.1042/bj0241301. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Elliott K. A., Greig M. E. The distribution of the succinic oxidase system in animal tissues. Biochem J. 1938 Sep;32(9):1407–1423. doi: 10.1042/bj0321407. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Green D. E., Dewan J. G., Leloir L. F. The beta-hydroxybutyric dehydrogenase of animal tissues. Biochem J. 1937 Jun;31(6):934–949. doi: 10.1042/bj0310934. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Greig M. E., Munro M. P., Elliott K. A. The metabolism of lactic and pyruvic acids in normal and tumour tissues: Ox retina and chick embryo. Biochem J. 1939 Apr;33(4):443–453. doi: 10.1042/bj0330443. [DOI] [PMC free article] [PubMed] [Google Scholar]
- HOLTON F. A., HULSMANN W. C., MYERS D. K., SLATER E. C. A comparison of the properties of mitochondria isolated from liver and heart. Biochem J. 1957 Dec;67(4):579–594. doi: 10.1042/bj0670579. [DOI] [PMC free article] [PubMed] [Google Scholar]
- JOHNSON D., LARDY H. Substrate-selective inhibition of mitochondrial oxidations by enhanced tonicity. Nature. 1958 Mar 8;181(4610):701–702. doi: 10.1038/181701a0. [DOI] [PubMed] [Google Scholar]
- KRAHL M. E. Oxidative pathways for glucose in eggs of the sea urchin. Biochim Biophys Acta. 1956 Apr;20(1):27–32. doi: 10.1016/0006-3002(56)90258-x. [DOI] [PubMed] [Google Scholar]
- Krebs H. A., Eggleston L. V. Micro-determination of isocitric and cis-aconitic acids in biological material. Biochem J. 1944;38(5):426–437. doi: 10.1042/bj0380426. [DOI] [PMC free article] [PubMed] [Google Scholar]
- LARDY H. A., WELLMAN H. Oxidative phosphorylations; rôle of inorganic phosphate and acceptor systems in control of metabolic rates. J Biol Chem. 1952 Mar;195(1):215–224. [PubMed] [Google Scholar]
- LEHNINGER A. L., GREVILLE G. D. The enzymic oxidation of alpha- and 2-beta-hydroxybutyrate. Biochim Biophys Acta. 1953 Sep-Oct;12(1-2):188–202. doi: 10.1016/0006-3002(53)90138-3. [DOI] [PubMed] [Google Scholar]
- MCCANN W. P. The oxidation of ketone bodies by mitochondria from liver and peripheral tissues. J Biol Chem. 1957 May;226(1):15–22. [PubMed] [Google Scholar]
- Needham J., Nowiński W. W., Dixon K. C., Cook R. P. Intermediary carbohydrate metabolism in embryonic life: The formation and removal of pyruvic acid. III. The Pasteur effect and the Meyerhof cycle. IV. The distribution of acid-soluble phosphorus. Biochem J. 1937 Jul;31(7):1185–1209. doi: 10.1042/bj0311185. [DOI] [PMC free article] [PubMed] [Google Scholar]
- PLAUT G. W. E., PLAUT K. A. Oxidative metabolism of heart mitochondria. J Biol Chem. 1952 Nov;199(1):141–151. [PubMed] [Google Scholar]
- STERN J. R. Crystalline beta-hydroxybutyryl dehydrogenase from pig heart. Biochim Biophys Acta. 1957 Nov;26(2):448–449. doi: 10.1016/0006-3002(57)90040-9. [DOI] [PubMed] [Google Scholar]
- STERN J. R. Thioltranscrotonylase and beta-hydroxybutyryl COA racemase activities of crystalline crotonase. Biochim Biophys Acta. 1957 Dec;26(3):641–643. doi: 10.1016/0006-3002(57)90114-2. [DOI] [PubMed] [Google Scholar]
- WAKIL S. J. D(-)beta-Hydroxybutyryl CoA dehydrogenase. Biochim Biophys Acta. 1955 Oct;18(2):314–315. doi: 10.1016/0006-3002(55)90089-5. [DOI] [PubMed] [Google Scholar]
- WAKIL S. J., GREEN D. E., MII S., MAHLER H. R. Studies on the fatty acid oxidizing system of animal tissues. VI. beta-Hydroxyacyl coenzyme A dehydrogenase. J Biol Chem. 1954 Apr;207(2):631–638. [PubMed] [Google Scholar]
