Skip to main content
IUCrData logoLink to IUCrData
. 2025 Mar 4;10(Pt 3):x250189. doi: 10.1107/S2414314625001890

2-Oxo-2H-chromen-7-yl tert-butyl­acetate

Hypolite Bazié a, Eric Ziki b,*, Sorgho Brahima a,*, Veroarisinima Ratsimbazafy c, Patrick Roge c, Emmanuel Wenger d, Abdoulaye Djandé a, Claude Lecomte d
Editor: W T A Harrisone
PMCID: PMC11969393  PMID: 40191816

In the title compound, the dihedral angle between the 2H-chromen-2-one ring system and the tert-butyl­acetate moiety is 72.72 (9)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds, generating C(6) chains and R22(20) loops that are reinforced by weak aromatic π–π stacking inter­actions.

Keywords: crystal structure, Hirshfeld surface, coumarin, hydrogen bond

Abstract

In the title compound, C15H16O4, the dihedral angle between the 2H-chromen-2-one ring system and the tert-butyl­acetate moiety is 72.72 (9)°. In the crystal, the mol­ecules are connected through C—H⋯O hydrogen bonds, generating C(6) chains and R22(20) loops that are reinforced by weak aromatic π–π stacking inter­actions. The H⋯H, H⋯O/O⋯H, H⋯C/C⋯H and C⋯C contacts contribute 50.6, 29.1, 8.5 and 6.8%, respectively, to the Hirshfeld surface.graphic file with name x-10-x250189-scheme1-3D1.jpg

Structure description

The title coumarin derivative, C15H16O4 (I), was synthesized by a research team led by Professor Djandé (LC2M, Ouagadougou, Burkina Faso) as part of the AFRAMED project (Kenfack Tsobnang et al., 2024). Coumarin-derived compounds exhibit various biological activities, such as anti­cancer (Yadav et al., 2024; Rawat et al., 2022), anti­coagulant (Singh et al., 2019), anti-inflammatory (Todeschini et al., 1998) and anti-glaucoma (Ziki et al., 2023) properties.

As shown in Fig. 1, the 2H-chromen-2-one moiety formed by atoms C1–C9/O1/O2 in (I) is almost planar with an r.m.s deviation of 0.027 Å and the dihedral angle between this ring system and the plane formed by atoms C10–C12/C14 in the tert-butyl­acetate moiety is 72.72 (9)°. An S(6) ring motif resulting from an intra­molecular C13—H13B⋯O4 hydrogen bond is observed (Table 1). The plane passing through atoms C10–C12/C14 of the tert-butyl­acetate moiety contains the ester function atoms (r.m.s = 0.228 Å), but methyl atoms C13 and C15 atoms are on either side of this plane with deviations of 1.275 (1) and −1.244 (1) Å, respectively.

Figure 1.

Figure 1

The mol­ecular structure of (I) with displacement ellipsoids drawn at the 50% probability level.

Table 1. Hydrogen-bond geometry (Å, °).

D—H⋯A D—H H⋯A DA D—H⋯A
C5—H5⋯O4i 0.95 2.50 3.4144 (13) 161
C11—H11B⋯O2ii 0.99 2.52 3.2523 (13) 131
C13—H13B⋯O4 0.98 2.43 3.0924 (14) 124

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

In the crystal of (I), mol­ecules are linked by weak hydrogen bonds of the C—H⋯O type. A pair of C11—H11B⋯O2(−x + 2, −y, −z + 1) hydrogen bonds generates a centrosymmetric Inline graphic(20) loop, as shown in Fig. 3. The C5—H5⋯O4(x  − 1, y, z) hydrogen bonds form C(6) chains propagating in the [100] direction (Fig. 2). Aromatic π–π stacking inter­actions between the pyrone ring (centroid Cg1) and benzene ring (centroid Cg2) of a symmetry-related (1 − x, −y, 1 − z) mol­ecule reinforce the cohesion of mol­ecules [Cg1⋯Cg2 = 3.5485 (8) with a slippage of 1.042 Å],

Figure 2.

Figure 2

Part of the crystal of (I) showing the formation of an undulating network along the b axis [C(6) and Inline graphic(20) motifs]. Dashed lines indicate hydrogen bonds.

The Hirshfeld surface and two-dimensional fingerprint (FP) plot of (1) (Fig. 3) generated by CrystalExplorer21.5 (Spackman et al., 2021) confirmed the above inter­actions. The fingerprint plots show the different contributions of the atoms in the crystal-to-surface contacts. The most important contributions are H⋯H and H⋯O/O⋯H contacts with 50.6 and 29.1%, respectively (Fig. 3d and 3f). The H⋯C/C⋯H and C⋯C contacts contribute 8.5 and 6.8%, respectively. These values are close to those of 2-oxo-2H-chromen-6-yl 4- tert-butyl­benzoate (Kenfack Tsobnang et al., 2024).

Figure 3.

Figure 3

(a), (b) Hirshfeld surface of (I) mapped over dnorm, (c) overall two-dimensional fingerprint plot of and those delineated into contributions from different contacts: (d) H⋯H, (d) H⋯C/C⋯H and (e) H⋯O/O⋯H.

Synthesis and crystallization

To a solution of tert-butyl­acetyl chloride (6.2 mmol, 0.9 ml) in dried diethyl ether (16 ml) was added dried pyridine (4.7 molar equivalents; 2.31 ml) and 7-hy­droxy­coumarin (6.17 mmol, 1.00 g) in small portions over 30 min. The mixture was left under agitation at room temperature for 3 h and then poured into 40 ml of chloro­form. The solution was acidified with dilute hydro­chloric acid (5%) until the pH was 2–3. The organic layer was extracted, washed four times with 25 ml of water to neutrality, dried over MgSO4 and the solvent removed. The resulting crude product was filtered off with suction, washed with petroleum ether and recrystallized from acetone solution as colorless crystals of the title compound. Yield = 79%, m.p. = 368–371 K.

Refinement

Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C15H16O4
M r 260.28
Crystal system, space group Triclinic, PInline graphic
Temperature (K) 100
a, b, c (Å) 6.1599 (9), 7.2029 (11), 15.202 (2)
α, β, γ (°) 98.765 (5), 99.335 (5), 91.228 (5)
V3) 657.05 (17)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.10
Crystal size (mm) 0.20 × 0.12 × 0.07
 
Data collection
Diffractometer Bruker D8 Venture
No. of measured, independent and observed [I > 2σ(I)] reflections 53961, 4064, 3720
R int 0.050
(sin θ/λ)max−1) 0.719
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.043, 0.137, 1.05
No. of reflections 4064
No. of parameters 172
H-atom treatment H-atom parameters constrained
Δρmax, Δρmin (e Å−3) 0.37, −0.28

Computer programs: APEX4 and SAINT (Bruker, 2019), SHELXS2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b), PLATON (Spek, 2020) and publCIF (Westrip, 2010).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625001890/hb4507sup1.cif

x-10-x250189-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625001890/hb4507Isup2.hkl

x-10-x250189-Isup2.hkl (323.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314625001890/hb4507Isup3.cml

CCDC reference: 2427772

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

The authors thank the PMD2X X-ray diffraction facility (https://crm2.univ-lorraine.fr/lab/fr/services/pmd2x) of the Université de Lorraine for the X-ray diffraction measurements and the AFRAMED project. CCDC is also thanked for providing access to the Cambridge Structural Database through the FAIRE program. The authors are very grateful to UNESCO, CNRS and the IUCr for their support of the AFRAMED project.

full crystallographic data

2-Oxo-2H-chromen-7-yl tert-butylacetate . Crystal data

C15H16O4 Z = 2
Mr = 260.28 F(000) = 276
Triclinic, P1 Dx = 1.316 Mg m3
Hall symbol: -P 1 Melting point: 368 K
a = 6.1599 (9) Å Mo Kα radiation, λ = 0.71073 Å
b = 7.2029 (11) Å Cell parameters from 4066 reflections
c = 15.202 (2) Å θ = 2.9–30.8°
α = 98.765 (5)° µ = 0.10 mm1
β = 99.335 (5)° T = 100 K
γ = 91.228 (5)° Prism, yellow
V = 657.05 (17) Å3 0.20 × 0.12 × 0.07 mm

2-Oxo-2H-chromen-7-yl tert-butylacetate . Data collection

Bruker D8 Venture diffractometer 3720 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.050
Mirror monochromator θmax = 30.8°, θmin = 2.9°
φ and ω scan h = −8→8
53961 measured reflections k = −10→10
4064 independent reflections l = −21→21

2-Oxo-2H-chromen-7-yl tert-butylacetate . Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.043 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.137 H-atom parameters constrained
S = 1.05 w = 1/[σ2(Fo2) + (0.0778P)2 + 0.2223P] where P = (Fo2 + 2Fc2)/3
4064 reflections (Δ/σ)max < 0.001
172 parameters Δρmax = 0.37 e Å3
0 restraints Δρmin = −0.28 e Å3

2-Oxo-2H-chromen-7-yl tert-butylacetate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.

2-Oxo-2H-chromen-7-yl tert-butylacetate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O3 0.53573 (12) 0.19418 (10) 0.29426 (5) 0.02062 (16)
O1 0.88247 (11) 0.15470 (10) 0.59464 (5) 0.01913 (16)
O4 0.84148 (12) 0.38219 (10) 0.30532 (5) 0.02129 (16)
O2 1.04542 (14) 0.10787 (12) 0.72944 (5) 0.02755 (18)
C9 0.51037 (15) 0.26016 (12) 0.56924 (6) 0.01750 (18)
C6 0.53813 (16) 0.22422 (13) 0.38729 (6) 0.01796 (18)
C5 0.34391 (15) 0.28555 (13) 0.41609 (7) 0.01937 (18)
H5 0.222778 0.314675 0.374030 0.023*
C4 0.33122 (15) 0.30309 (13) 0.50706 (7) 0.01946 (19)
H4 0.200134 0.344549 0.527611 0.023*
C8 0.70128 (15) 0.20004 (13) 0.53717 (6) 0.01673 (17)
C7 0.71880 (15) 0.18000 (13) 0.44623 (6) 0.01781 (18)
H7 0.849197 0.137745 0.425327 0.021*
C10 0.70385 (15) 0.27069 (13) 0.26024 (6) 0.01775 (18)
C1 0.88143 (17) 0.15948 (14) 0.68557 (6) 0.02053 (19)
C3 0.50766 (17) 0.27137 (14) 0.66442 (7) 0.02070 (19)
H3 0.380241 0.311803 0.688282 0.025*
C2 0.68492 (18) 0.22481 (14) 0.71993 (7) 0.0225 (2)
H2 0.681287 0.234916 0.782707 0.027*
C11 0.68111 (16) 0.19153 (14) 0.16148 (6) 0.01956 (18)
H11A 0.522872 0.186209 0.134991 0.023*
H11B 0.728920 0.060533 0.156411 0.023*
C12 0.80830 (16) 0.29648 (14) 0.10383 (6) 0.02054 (19)
C13 1.05795 (18) 0.29276 (19) 0.13479 (8) 0.0305 (2)
H13A 1.135176 0.360602 0.096951 0.046*
H13B 1.096000 0.353175 0.197906 0.046*
H13C 1.102008 0.162119 0.129266 0.046*
C15 0.7374 (2) 0.50003 (16) 0.10722 (7) 0.0284 (2)
H15A 0.820076 0.565015 0.070105 0.043*
H15B 0.579442 0.500204 0.083962 0.043*
H15C 0.767411 0.564855 0.169777 0.043*
C14 0.74935 (19) 0.19270 (17) 0.00628 (7) 0.0277 (2)
H14A 0.827400 0.255304 −0.033149 0.041*
H14B 0.792917 0.062204 0.003871 0.041*
H14C 0.590176 0.194470 −0.014024 0.041*

2-Oxo-2H-chromen-7-yl tert-butylacetate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O3 0.0191 (3) 0.0257 (3) 0.0169 (3) −0.0023 (3) 0.0020 (2) 0.0045 (3)
O1 0.0186 (3) 0.0219 (3) 0.0171 (3) 0.0041 (2) 0.0023 (2) 0.0040 (2)
O4 0.0204 (3) 0.0241 (3) 0.0187 (3) −0.0014 (3) 0.0019 (2) 0.0032 (3)
O2 0.0274 (4) 0.0334 (4) 0.0216 (4) 0.0057 (3) −0.0004 (3) 0.0074 (3)
C9 0.0181 (4) 0.0150 (4) 0.0201 (4) 0.0005 (3) 0.0050 (3) 0.0028 (3)
C6 0.0184 (4) 0.0182 (4) 0.0177 (4) −0.0005 (3) 0.0030 (3) 0.0041 (3)
C5 0.0156 (4) 0.0199 (4) 0.0229 (4) 0.0003 (3) 0.0018 (3) 0.0058 (3)
C4 0.0163 (4) 0.0188 (4) 0.0244 (4) 0.0015 (3) 0.0057 (3) 0.0042 (3)
C8 0.0167 (4) 0.0155 (4) 0.0181 (4) 0.0014 (3) 0.0026 (3) 0.0034 (3)
C7 0.0175 (4) 0.0186 (4) 0.0180 (4) 0.0023 (3) 0.0041 (3) 0.0035 (3)
C10 0.0176 (4) 0.0189 (4) 0.0176 (4) 0.0031 (3) 0.0024 (3) 0.0054 (3)
C1 0.0244 (5) 0.0197 (4) 0.0173 (4) 0.0006 (3) 0.0024 (3) 0.0037 (3)
C3 0.0222 (4) 0.0195 (4) 0.0214 (4) 0.0010 (3) 0.0078 (3) 0.0019 (3)
C2 0.0274 (5) 0.0232 (4) 0.0174 (4) 0.0008 (4) 0.0060 (3) 0.0021 (3)
C11 0.0197 (4) 0.0213 (4) 0.0171 (4) 0.0010 (3) 0.0020 (3) 0.0029 (3)
C12 0.0202 (4) 0.0258 (4) 0.0156 (4) 0.0012 (3) 0.0030 (3) 0.0032 (3)
C13 0.0198 (5) 0.0468 (7) 0.0245 (5) −0.0003 (4) 0.0048 (4) 0.0032 (4)
C15 0.0382 (6) 0.0250 (5) 0.0223 (5) 0.0003 (4) 0.0024 (4) 0.0075 (4)
C14 0.0294 (5) 0.0354 (6) 0.0172 (4) 0.0008 (4) 0.0040 (4) 0.0011 (4)

2-Oxo-2H-chromen-7-yl tert-butylacetate . Geometric parameters (Å, º)

O3—C10 1.3710 (11) C3—C2 1.3490 (14)
O3—C6 1.3953 (11) C3—H3 0.9500
O1—C1 1.3785 (11) C2—H2 0.9500
O1—C8 1.3791 (11) C11—C12 1.5339 (14)
O4—C10 1.2033 (12) C11—H11A 0.9900
O2—C1 1.2151 (12) C11—H11B 0.9900
C9—C8 1.3970 (13) C12—C15 1.5344 (15)
C9—C4 1.4044 (13) C12—C13 1.5355 (15)
C9—C3 1.4396 (13) C12—C14 1.5380 (14)
C6—C7 1.3862 (13) C13—H13A 0.9800
C6—C5 1.3971 (13) C13—H13B 0.9800
C5—C4 1.3845 (13) C13—H13C 0.9800
C5—H5 0.9500 C15—H15A 0.9800
C4—H4 0.9500 C15—H15B 0.9800
C8—C7 1.3900 (13) C15—H15C 0.9800
C7—H7 0.9500 C14—H14A 0.9800
C10—C11 1.5054 (13) C14—H14B 0.9800
C1—C2 1.4540 (14) C14—H14C 0.9800
C10—O3—C6 119.43 (7) C1—C2—H2 119.3
C1—O1—C8 121.85 (8) C10—C11—C12 117.18 (8)
C8—C9—C4 118.47 (9) C10—C11—H11A 108.0
C8—C9—C3 117.80 (9) C12—C11—H11A 108.0
C4—C9—C3 123.72 (9) C10—C11—H11B 108.0
C7—C6—O3 120.83 (8) C12—C11—H11B 108.0
C7—C6—C5 122.58 (9) H11A—C11—H11B 107.2
O3—C6—C5 116.39 (8) C11—C12—C15 110.51 (8)
C4—C5—C6 118.78 (9) C11—C12—C13 111.12 (8)
C4—C5—H5 120.6 C15—C12—C13 110.36 (9)
C6—C5—H5 120.6 C11—C12—C14 106.66 (8)
C5—C4—C9 120.60 (9) C15—C12—C14 109.16 (8)
C5—C4—H4 119.7 C13—C12—C14 108.94 (8)
C9—C4—H4 119.7 C12—C13—H13A 109.5
O1—C8—C7 116.34 (8) C12—C13—H13B 109.5
O1—C8—C9 121.32 (8) H13A—C13—H13B 109.5
C7—C8—C9 122.33 (9) C12—C13—H13C 109.5
C6—C7—C8 117.24 (8) H13A—C13—H13C 109.5
C6—C7—H7 121.4 H13B—C13—H13C 109.5
C8—C7—H7 121.4 C12—C15—H15A 109.5
O4—C10—O3 123.07 (9) C12—C15—H15B 109.5
O4—C10—C11 128.49 (9) H15A—C15—H15B 109.5
O3—C10—C11 108.45 (8) C12—C15—H15C 109.5
O2—C1—O1 116.63 (9) H15A—C15—H15C 109.5
O2—C1—C2 126.14 (9) H15B—C15—H15C 109.5
O1—C1—C2 117.23 (9) C12—C14—H14A 109.5
C2—C3—C9 120.42 (9) C12—C14—H14B 109.5
C2—C3—H3 119.8 H14A—C14—H14B 109.5
C9—C3—H3 119.8 C12—C14—H14C 109.5
C3—C2—C1 121.30 (9) H14A—C14—H14C 109.5
C3—C2—H2 119.3 H14B—C14—H14C 109.5

2-Oxo-2H-chromen-7-yl tert-butylacetate . Hydrogen-bond geometry (Å, º)

D—H···A D—H H···A D···A D—H···A
C5—H5···O4i 0.95 2.50 3.4144 (13) 161
C11—H11B···O2ii 0.99 2.52 3.2523 (13) 131
C13—H13B···O4 0.98 2.43 3.0924 (14) 124

Symmetry codes: (i) x−1, y, z; (ii) −x+2, −y, −z+1.

References

  1. Bruker (2019). APEX4 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  2. Kenfack Tsobnang, P., Ziki, E., Siaka, S., Yoda, J., Kamal, S., Bouraima, A., Djifa Hounsi, A., Wenger, E., Bendeif, E.-E. & Lecomte, C. (2024). Acta Cryst. E80, 106–109. [DOI] [PMC free article] [PubMed]
  3. Rawat, A. A. & Reddy, V. B. (2022). Eur. J. Med. Chem. Rep. 5, 100038.
  4. Spackman, P. R., Turner, M. J., McKinnon, J. J., Wolff, S. K., Grimwood, D. J., Jayatilaka, D. & Spackman, M. A. (2021). J. Appl. Cryst.54, 1006–1011. [DOI] [PMC free article] [PubMed]
  5. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  6. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  7. Spek, A. L. (2020). Acta Cryst. E76, 1–11. [DOI] [PMC free article] [PubMed]
  8. Todeschini, A. R., de Miranda, A. L. P., da Silva, K. C. M., Parrini, S. C. & Barreiro, E. J. (1998). Eur. J. Med. Chem.33, 189–199.
  9. Westrip, S. P. (2010). J. Appl. Cryst.43, 920–925.
  10. Yadav, A. K., Shrestha, R. M. & Yadav, P. N. (2024). Eur. J. Med. Chem. p. 267.
  11. Ziki, E., Akonan, L., Kouman, K. C., Dali, D., Megnassan, E., Kakou-Yao, R., Tenon, A. J., Frecer, V. & Miertus, S. J. (2023). J. Pharm. Res. Int.35, 10–33.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2414314625001890/hb4507sup1.cif

x-10-x250189-sup1.cif (1.5MB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S2414314625001890/hb4507Isup2.hkl

x-10-x250189-Isup2.hkl (323.8KB, hkl)

Supporting information file. DOI: 10.1107/S2414314625001890/hb4507Isup3.cml

CCDC reference: 2427772

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from IUCrData are provided here courtesy of International Union of Crystallography

RESOURCES