Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;333:69–79. doi: 10.1113/jphysiol.1982.sp014439

Catecholamine synthesis in rabbit carotid body in vitro

S Fidone 1, C Gonzalez 1
PMCID: PMC1197234  PMID: 6820664

Abstract

1. Catecholamine synthesis in rabbit carotid body was studied in vitro using [3H]DOPA and [3H]tyrosine as precursors. The effects of sympathectomy and transection of the carotid sinus nerve on [3H]dopamine ([3H]DA) and [3H]noradrenaline ([3H]NA) synthesis were investigated in chronically denervated carotid bodies.

2. When [3H]DOPA was used as precursor, the synthesis of [3H]DA was linear for more than 6 hr. The carotid body synthesized larger amounts of [3H]catecholamines than when [3H]tyrosine was used as precursor, but most of this excess was liberated into the incubation media. Using 10 μM-[3H]DOPA as precursor, the synthesis rates were 6·76 and 1·51 n-mole/g per hr for [3H]DA and [3H]NA, respectively; with 40 μM-[3H]DOPA, these values increased to 19·22 and 3·23 n-mole/g per hr, respectively.

3. The relationship between [3H]DOPA concentration and [3H]DA synthesis was linear throughout the range 5-40 μM-[3H]DOPA.

4. Sympathectomy reduced the synthesis of [3H]NA by 90% and [3H]DA by 37% when [3H]DOPA was used as precursor.

5. When [3H]tyrosine (40 μM) was used as precursor, synthesis of [3H]catecholamines was linear for at least 4 hr, with rates of 12·10 and 0·85 n-mole/g per hr for [3H]DA and [3H]NA, respectively.

6. [3H]DA and [3H]NA synthesis from [3H]tyrosine exhibited the characteristics of saturable processes, with Km values of 16·8 and 17·6 μM, respectively.

7. 6-methyltetrahydropterine (6-MPH4, 100 μM), a synthetic analogue of the natural co-factor for tyrosine hydroxylase, increased [3H]DA and [3H]NA synthesis from [3 H]tyrosine in both the carotid body and superior cervical ganglion, with the greatest effect seen in the carotid body.

8. When [3H]tyrosine was used as precursor, sympathectomy of the carotid body reduced [3H]NA synthesis by 80%, but did not alter [3H]DA or [3H]tyrosine levels in the tissue. Transection of the carotid sinus nerve had no effect on [3H]catecholamine synthesis in the carotid body.

Full text

PDF
69

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bacopoulos N. G., Bhatnagar R. K. Correlation between tyrosine hydroxylase activity and catecholamine concentration or turnover in brain regions. J Neurochem. 1977 Oct;29(4):639–643. doi: 10.1111/j.1471-4159.1977.tb07780.x. [DOI] [PubMed] [Google Scholar]
  2. Besson M. J., Cheramy A., Feltz P., Glowinski J. Release of newly synthesized dopamine from dopamine-containing terminals in the striatum of the rat. Proc Natl Acad Sci U S A. 1969 Mar;62(3):741–748. doi: 10.1073/pnas.62.3.741. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Black A. M., Comroe J. H., Jr, Jacobs L. Species difference in carotid body response of cat and dog to dopamine and serotonin. Am J Physiol. 1972 Nov;223(5):1097–1102. doi: 10.1152/ajplegacy.1972.223.5.1097. [DOI] [PubMed] [Google Scholar]
  4. Chiocchio S. R., Biscardi A. M., Tramezzani J. H. Catecholamines in the carotid body of the cat. Nature. 1966 Nov 19;212(5064):834–835. doi: 10.1038/212834a0. [DOI] [PubMed] [Google Scholar]
  5. Chiocchio S. R., King M. P., Angelakos E. T. Carotid body catecholamines. Histochemical studies on the effects of drug treatments. Histochemie. 1971;25(1):52–59. doi: 10.1007/BF00303945. [DOI] [PubMed] [Google Scholar]
  6. Dearnaley D. P., Fillenz M., Woods R. I. The identification of dopamine in the rabbit's carotid body. Proc R Soc Lond B Biol Sci. 1968 Jun 11;170(1019):195–203. doi: 10.1098/rspb.1968.0033. [DOI] [PubMed] [Google Scholar]
  7. Gonzalez C., Kwok Y., Gibb J., Fidone S. Effects of hypoxia on tyrosine hydroxylase activity in rat carotid body. J Neurochem. 1979 Sep;33(3):713–719. doi: 10.1111/j.1471-4159.1979.tb05216.x. [DOI] [PubMed] [Google Scholar]
  8. Gonzalez C., Kwok Y., Gibb J., Fidone S. Physiological and pharmacologic effects on TH activity in rabbit and cat carotid body. Am J Physiol. 1981 Jan;240(1):R38–R43. doi: 10.1152/ajpregu.1981.240.1.R38. [DOI] [PubMed] [Google Scholar]
  9. Gonzalez C., Obeso A., Fidone S. Tris buffer: effects on catecholamine synthesis. J Neurochem. 1979 Mar;32(3):1143–1145. doi: 10.1111/j.1471-4159.1979.tb04610.x. [DOI] [PubMed] [Google Scholar]
  10. Hanbauer I., Hellstrom S. The regulation of dopamine and noradrenaline in the rat carotid body and its modification by denervation and by hypoxia. J Physiol. 1978 Sep;282:21–34. doi: 10.1113/jphysiol.1978.sp012445. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hanbauer I., Lovenberg W., Costa E. Induction of tyrosine 3-monooxygenase in carotid body of rats exposed to hypoxic conditions. Neuropharmacology. 1977 Apr;16(4):277–282. doi: 10.1016/0028-3908(77)90107-1. [DOI] [PubMed] [Google Scholar]
  12. Hellström S., Hanbauer I., Costa E. Selective decrease of dopamine content in rat carotid body during exposure to hypoxic conditions. Brain Res. 1976 Dec 17;118(2):352–355. doi: 10.1016/0006-8993(76)90725-3. [DOI] [PubMed] [Google Scholar]
  13. Hellström S., Koslow S. H. Biogenic amines in carotid body of adult and infant rats--a gas chromatographic-mass spectrometric assay. Acta Physiol Scand. 1975 Apr;93(4):540–547. doi: 10.1111/j.1748-1716.1975.tb05846.x. [DOI] [PubMed] [Google Scholar]
  14. Helpap B., Hempel K. Autoradiographische Untersuchungen mit 3H-DOPA zum Catecholamin-Stoffwechsel des Karotiskörperchens. Verh Dtsch Ges Pathol. 1968;52:464–469. [PubMed] [Google Scholar]
  15. Hildebrand J. G., Barker D. L., Herbert E., Kravitz E. A. Screening for neurotransmitters: a rapid radiochemical procedure. J Neurobiol. 1971;2(3):231–246. doi: 10.1002/neu.480020305. [DOI] [PubMed] [Google Scholar]
  16. Jonsson G., Sachs C. Synthesis of noradrenaline from 3,4-dihydroxyphenylalanine (DOPA) and dopamine in adrenergic nerves of mouse atrium--effect of reserpine, monoamine oxidase and tyrosine hydroxylase inhibition. Acta Physiol Scand. 1970 Nov;80(3):307–322. doi: 10.1111/j.1748-1716.1970.tb04795.x. [DOI] [PubMed] [Google Scholar]
  17. Kettler R., Bartholini G., Pletscher A. In vivo enhancement of tyrosine hydroxylation in rat striatum by tetrahydrobiopterin. Nature. 1974 May 31;249(456):476–478. doi: 10.1038/249476a0. [DOI] [PubMed] [Google Scholar]
  18. LEVER J. D., BOYD J. D. Osmiophile granules in the glomus cells of the rabbit carotid body. Nature. 1957 May 25;179(4569):1082–1083. doi: 10.1038/1791082b0. [DOI] [PubMed] [Google Scholar]
  19. LEVITT M., SPECTOR S., SJOERDSMA A., UDENFRIEND S. ELUCIDATION OF THE RATE-LIMITING STEP IN NOREPINEPHRINE BIOSYNTHESIS IN THE PERFUSED GUINEA-PIG HEART. J Pharmacol Exp Ther. 1965 Apr;148:1–8. [PubMed] [Google Scholar]
  20. LOVENBERG W., WEISSBACH H., UDENFRIEND S. Aromatic L-amino acid decarboxylase. J Biol Chem. 1962 Jan;237:89–93. [PubMed] [Google Scholar]
  21. Llados F., Zapata P. Effects of adrenoceptor stimulating and blocking agents on carotid body chemosensory inhibition. J Physiol. 1978 Jan;274:501–509. doi: 10.1113/jphysiol.1978.sp012163. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Llados F., Zapata P. Effects of dopamine analogues and antagonists on carotid body chemosensors in situ. J Physiol. 1978 Jan;274:487–499. doi: 10.1113/jphysiol.1978.sp012162. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Molinoff P. B., Axelrod J. Biochemistry of catecholamines. Annu Rev Biochem. 1971;40:465–500. doi: 10.1146/annurev.bi.40.070171.002341. [DOI] [PubMed] [Google Scholar]
  24. Murrin L. C., Roth R. H. Dopaminergic neurons: effects of electrical stimulation on dopamine biosynthesis. Mol Pharmacol. 1976 May;12(3):463–475. [PubMed] [Google Scholar]
  25. NAGATSU T., LEVITT M., UDENFRIEND S. TYROSINE HYDROXYLASE. THE INITIAL STEP IN NOREPINEPHRINE BIOSYNTHESIS. J Biol Chem. 1964 Sep;239:2910–2917. [PubMed] [Google Scholar]
  26. Patrick R. L., Barchas J. D. Dopamine synthesis in rat brain striatal synaptosomes. II. Dibutyryl cyclic adenosine 3':5'-monophosphoric acid and 6-methyltetrahydropterine-induced synthesis increases without an increase in endogenous dopamine release. J Pharmacol Exp Ther. 1976 Apr;197(1):97–104. [PubMed] [Google Scholar]
  27. Persson T. Central and peripheral catecholamine turnover studied by means of 3H-DOPA and 3H-tyrosine. Acta Pharmacol Toxicol (Copenh) 1969;27(6):397–409. doi: 10.1111/j.1600-0773.1969.tb00486.x. [DOI] [PubMed] [Google Scholar]
  28. Roth R. H., Stjärne L., von Euler U. S. Acceleration of noradrenaline biosynthesis by nerve stimulation. Life Sci. 1966 Jun;5(12):1071–1075. doi: 10.1016/0024-3205(66)90089-0. [DOI] [PubMed] [Google Scholar]
  29. Sampson S. R., Aminoff M. J., Jaffe R. A., Vidruk E. H. Analysis of inhibitory effect of dopamine on carotid body chemoreceptors in cats. Am J Physiol. 1976 Jun;230(6):1494–1498. doi: 10.1152/ajplegacy.1976.230.6.1494. [DOI] [PubMed] [Google Scholar]
  30. Sedvall G. C., Kopin I. J. Acceleration of norepinephrine synthesis in the rat submaxillary gland in vivo during sympathetic nerve stimulation. Life Sci. 1967 Jan 1;6(1):45–51. doi: 10.1016/0024-3205(67)90360-8. [DOI] [PubMed] [Google Scholar]
  31. Shiman R., Akino M., Kaufman S. Solubilization and partial purification of tyrosine hydroxylase from bovine adrenal medulla. J Biol Chem. 1971 Mar 10;246(5):1330–1340. [PubMed] [Google Scholar]
  32. Thoa N. B., Johnson D. G., Kopin I. J., Weiner N. Acceleration of catecholamine formation in the guinea-pig vas deferens after hypogastric nerve stimulation: roles of tyrosine hydroxylase and new protein synthesis. J Pharmacol Exp Ther. 1971 Sep;178(3):442–449. [PubMed] [Google Scholar]
  33. Udenfriend S., Zaltzman-Nirenberg P., Gordon R., Spector S. Evaluation of the biochemical effects produced in vivo by inhibitors of the three enzymes involved in norepinephrine biosynthesis. Mol Pharmacol. 1966 Mar;2(2):95–105. [PubMed] [Google Scholar]
  34. Udenfriend S., Zaltzman-Nirenberg P., Nagatsu T. Inhibitors of purified beef adrenal tyrosine hydroxylase. Biochem Pharmacol. 1965 May;14(5):837–845. doi: 10.1016/0006-2952(65)90103-6. [DOI] [PubMed] [Google Scholar]
  35. Weiner N., Rabadjija M. The effect of nerve stimulation on the synthesis and metabolism of norepinephrine in the isolated guinea-pig hypogastric nerve-vas deferens preparation. J Pharmacol Exp Ther. 1968 Mar;160(1):61–71. [PubMed] [Google Scholar]
  36. Zapata P. Effects of dopamine on carotid chemo- and baroreceptors in vitro. J Physiol. 1975 Jan;244(1):235–251. doi: 10.1113/jphysiol.1975.sp010794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Zapata P., Hess A., Bliss E. L., Eyzaguirre C. Chemical, electron microscopic and physiological observations on the role of catecholamines in the carotid body. Brain Res. 1969 Jul;14(2):473–496. doi: 10.1016/0006-8993(69)90123-1. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES