Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982;333:463–480. doi: 10.1113/jphysiol.1982.sp014464

Existence of a sodium-induced calcium release mechanism of frog skeletal muscle fibres.

D Potreau, G Raymond
PMCID: PMC1197259  PMID: 7182474

Abstract

1. The electrical and the mechanical activity of isolated frog muscle fibres have been simultaneously recorded in a physiological solution which allows the development of a large tubular sodium current. 2. Under such experimental conditions, fibres develop long-lasting action potentials and strong mechanical responses. 3. In voltage-clamp experiments a slow inward current is revealed for depolarizations higher than +20 mV from the resting potential. This current increases until +40 to +50 mV and then decreases to reverse near +90 mV. The amplitude of the mechanical response increases with the potential to reach an optimum value between +40 and +50 mV and then decreases to stabilize when the depolarization is near +90 mV. 4. In the presence of picrotoxin the slow inward current is reversibly inhibited and the tension-depolarization curve has an S-shape as found in normal physiological conditions. 5. The dependence of a part of the contraction upon the slow inward current is reinforced by the fact that in a 50% sodium solution the amplitude of the current and that of the contraction are reduced in the same proportion. 6. Detubulated fibres failed to generate such a sodium inward current. 7. When sodium ions are replaced by lithium ions a slow inward lithium current develops but it does not induce a mechanical response. 8. Tetracaine reversibly inhibits the current-dependent component of the contraction without affecting the potential-dependent one. 9. It is concluded that the contraction recorded in the present experimental conditions is the sum of two components: one is potential-dependent and the other depends on a sodium-induced calcium release mechanism.

Full text

PDF
463

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Adrian R. H., Chandler W. K., Hodgkin A. L. Voltage clamp experiments in striated muscle fibres. J Physiol. 1970 Jul;208(3):607–644. doi: 10.1113/jphysiol.1970.sp009139. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adrian R. H., Peachey L. D. Reconstruction of the action potential of frog sartorius muscle. J Physiol. 1973 Nov;235(1):103–131. doi: 10.1113/jphysiol.1973.sp010380. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Almers W., Best P. M. Effects of tetracaine on displacement currents and contraction of frog skeletal muscle. J Physiol. 1976 Nov;262(3):583–611. doi: 10.1113/jphysiol.1976.sp011611. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Almers W. Local anesthetics and excitation-contraction coupling in skeletal muscle. Effects on a Ca++-channel [proceedings]. Biophys J. 1977 Jun;18(3):355–357. doi: 10.1016/S0006-3495(77)85620-8. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Almers W. Some dielectric properties of muscle membrane and their possible importance for excitation-contraction coupling. Ann N Y Acad Sci. 1975 Dec 30;264:278–292. doi: 10.1111/j.1749-6632.1975.tb31489.x. [DOI] [PubMed] [Google Scholar]
  6. Bonvallet R., Ildefonse M., Rougier O. Physiologie animale. -Mise en évidence d'une libération intracellulaire de calcium induite par les ions sodium au niveau de trabécules auriculaires de Grenouille. C R Seances Acad Sci D. 1980 Oct 13;291(6):557–560. [PubMed] [Google Scholar]
  7. Caillé J., Ildefonse M., Rougier O. Existence of a sodium current in the tubular membrane of frog twitch muscle fibre; its possible role in the activation of contraction. Pflugers Arch. 1978 May 18;374(2):167–177. doi: 10.1007/BF00581298. [DOI] [PubMed] [Google Scholar]
  8. Duval A., Léoty C. Ionic currents in mammalian fast skeletal muscle. J Physiol. 1978 May;278:403–423. doi: 10.1113/jphysiol.1978.sp012312. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Eisenberg R. S., Howell J. N., Vaughan P. C. The maintenance of resting potentials in glycerol-treated muscle fibres. J Physiol. 1971 May;215(1):95–102. doi: 10.1113/jphysiol.1971.sp009459. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Endo M. Calcium release from the sarcoplasmic reticulum. Physiol Rev. 1977 Jan;57(1):71–108. doi: 10.1152/physrev.1977.57.1.71. [DOI] [PubMed] [Google Scholar]
  11. FALK G., FATT P. LINEAR ELECTRICAL PROPERTIES OF STRIATED MUSCLE FIBRES OBSERVED WITH INTRACELLULAR ELECTRODES. Proc R Soc Lond B Biol Sci. 1964 Apr 14;160:69–123. doi: 10.1098/rspb.1964.0030. [DOI] [PubMed] [Google Scholar]
  12. Gage P. W., Eisenberg R. S. Capacitance of the surface and transverse tubular membrane of frog sartorius muscle fibers. J Gen Physiol. 1969 Mar;53(3):265–278. doi: 10.1085/jgp.53.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., HOROWICZ P. Movements of Na and K in single muscle fibres. J Physiol. 1959 Mar 3;145(2):405–432. doi: 10.1113/jphysiol.1959.sp006150. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hille B., Campbell D. T. An improved vaseline gap voltage clamp for skeletal muscle fibers. J Gen Physiol. 1976 Mar;67(3):265–293. doi: 10.1085/jgp.67.3.265. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hodgkin A. L., Nakajima S. The effect of diameter on the electrical constants of frog skeletal muscle fibres. J Physiol. 1972 Feb;221(1):105–120. doi: 10.1113/jphysiol.1972.sp009742. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Horackova M., Vassort G. Calcium conductance in relation to contractility in frog myocardium. J Physiol. 1976 Aug;259(3):597–616. doi: 10.1113/jphysiol.1976.sp011485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ildefonse M., Rougier O. Voltage-clamp analysis of the early current in frog skeletal muscle fibre using the double sucrose-gap method. J Physiol. 1972 Apr;222(2):373–395. doi: 10.1113/jphysiol.1972.sp009803. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Lowe D. A., Richardson N. P., Taylor P., Donatsch P. Increasing intracellular sodium triggers calcium release from bound pools. Nature. 1976 Mar 25;260(5549):337–338. doi: 10.1038/260337a0. [DOI] [PubMed] [Google Scholar]
  19. Léoty C., Alix J. Some technical improvements for the voltage clamp with the double sucrose gap. Pflugers Arch. 1976 Sep 3;365(1):95–97. doi: 10.1007/BF00583633. [DOI] [PubMed] [Google Scholar]
  20. Léoty C., Raymond G. Mechanical activity and ionic currents in frog atrial trabeculae. Pflugers Arch. 1972;334(2):114–128. doi: 10.1007/BF00586785. [DOI] [PubMed] [Google Scholar]
  21. Mironneau J. Excitation-contraction coupling in voltage clamped uterine smooth muscle. J Physiol. 1973 Aug;233(1):127–141. doi: 10.1113/jphysiol.1973.sp010301. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Palmer R. F., Posey V. A. Ion effects on calcium accumulation by cardiac sarcoplasmic reticulum. J Gen Physiol. 1967 Sep;50(8):2085–2095. doi: 10.1085/jgp.50.8.2085. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Potreau D., Raymond G. Calcium-dependent electrical activity and contraction of voltage-clamped frog single muscle fibres. J Physiol. 1980 Oct;307:9–22. doi: 10.1113/jphysiol.1980.sp013420. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Potreau D., Raymond G. Slow inward barium current and contraction on frog single muscle fibres. J Physiol. 1980 Jun;303:91–109. doi: 10.1113/jphysiol.1980.sp013273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Raymond G., Potreau D. Barium ions and excitation-contraction coupling of frog single muscle fibres under controlled current and voltage. J Physiol (Paris) 1977 Oct;73(5):617–631. [PubMed] [Google Scholar]
  26. Schneider M. F., Chandler W. K. Voltage dependent charge movement of skeletal muscle: a possible step in excitation-contraction coupling. Nature. 1973 Mar 23;242(5395):244–246. doi: 10.1038/242244a0. [DOI] [PubMed] [Google Scholar]
  27. Takeda K. Prolonged sarcotubular regenerative response in frog sartorius muscle. Jpn J Physiol. 1977;27(3):379–389. doi: 10.2170/jjphysiol.27.379. [DOI] [PubMed] [Google Scholar]
  28. Vassort G., Rougier O. Membrane potential and slow inward current dependence of frog cardiac mechanical activity. Pflugers Arch. 1972;331(3):191–203. doi: 10.1007/BF00589126. [DOI] [PubMed] [Google Scholar]
  29. Venosa R. A. Inward movement of sodium ions in resting and stimulated frog's sartorius muscle. J Physiol. 1974 Aug;241(1):155–173. doi: 10.1113/jphysiol.1974.sp010646. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES