Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Jan;334:1–17. doi: 10.1113/jphysiol.1983.sp014476

Effect of prolactin on 86Rb+ uptake, potassium content and [G-3H]ouabain binding of lactating rabbit mammary tissue.

I R Falconer, J V Langley, A T Vacek
PMCID: PMC1197296  PMID: 6306227

Abstract

1. Ouabain-sensitive 86Rb+ uptake in slices of lactating rabbit mammary gland significantly increased after 20 min or 1 hr of incubation with ovine prolactin (NIH-P-S12; 1 microgram/ml.). 2. Total K+ content of the tissue significantly increased at 20 min of incubation with prolactin. 3. Neither vasopressin nor oxytocin, at concentrations of 2,20 or 40 mui.u./ml., had a significant effect on ouabain-sensitive 86Rb+ uptake or total K+ of the tissue after 30 min or 1 hr of incubation. 4. Tissue slices incubated in cycloheximide at 10 micrograms/ml. for up to 260 min showed a reduction in ouabain-sensitive 86Rb+ uptake and total K+ content, with half-lives of 115 and 63 min, respectively. 5. No consistent in vitro effect of prolactin on (Na+ + K+)-activated ATPase activity in homogenates, crude microsomal fractions or NaI-activated membrane fractions from lactating rabbit mammary gland was found. 6. After 3 hr of incubation of tissue slices in the presence or absence of prolactin (5 micrograms/ml.), no significant differences in the number of [G-3H]ouabain molecules bound per cell (5.2 X 10(4) and 6.2 X 10(4), respectively) or in the dissociation constant (KD) for ouabain binding (5.4 X 10(-7) M and 5.9 X 10(-7) M, respectively) were observed. 7. Incubation of the tissue with cycloheximide (10 micrograms/ml.) for 1-6 hr caused an exponential decrease in [G-3H]ouabain binding with a half-life of 3 hr. 8. It is concluded that prolactin stimulates the activity of the (Na+ + K+)-activated ATPase in slices of lactating rabbit mammary gland within one hour but over this period does not affect the number of ouabain-binding sites, which are apparently turned over with a half-life of 1-3 hr.

Full text

PDF
1

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Birkinshaw M., Falconer I. R. The localization of prolactin labelled with radioactive iodine in rabbit mammary tissue. J Endocrinol. 1972 Nov;55(2):323–334. doi: 10.1677/joe.0.0550323. [DOI] [PubMed] [Google Scholar]
  3. Bond G. C., Pasley J. N., Koike T. I., Llerena L. Contamination of an ovine prolactin preparation with antidiuretic hormone. J Endocrinol. 1976 Oct;71(1):169–170. doi: 10.1677/joe.0.0710169. [DOI] [PubMed] [Google Scholar]
  4. Chipperfield A. R., Whittam R. Reconstitution of the sodium pump from protein and phosphatidylserine: features of ouabain binding. J Physiol. 1973 Apr;230(2):467–476. doi: 10.1113/jphysiol.1973.sp010198. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. De Pover A., Godfraind T. Interaction of ouabain with (Na+ + K+)ATPase from human heart and from guinea-pig heart. Biochem Pharmacol. 1979 Oct 15;28(20):3051–3056. doi: 10.1016/0006-2952(79)90612-9. [DOI] [PubMed] [Google Scholar]
  6. Djiane J., Durand P., Kelly P. A. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology. 1977 May;100(5):1348–1356. doi: 10.1210/endo-100-5-1348. [DOI] [PubMed] [Google Scholar]
  7. Djiane J., Kelly P. A., Houdebine L. M. Effects of lysosomotropic agents, cytochalasin B and colchicine on the "down-regulation" of prolactin receptors in mammary gland explants. Mol Cell Endocrinol. 1980 May;18(2):87–98. doi: 10.1016/0303-7207(80)90084-2. [DOI] [PubMed] [Google Scholar]
  8. Erdmann E., Schoner W. Ouabain-receptor interactions in (Na + +K + )-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta. 1973 May 11;307(2):386–398. doi: 10.1016/0005-2736(73)90104-1. [DOI] [PubMed] [Google Scholar]
  9. Falconer I. R., Forsyth I. A., Wilson B. M., Dils R. Inhibition by low concentrations of ouabain of prolactin-induced lactogenesis in rabbit mammary-gland explants. Biochem J. 1978 Jun 15;172(3):509–516. doi: 10.1042/bj1720509. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Falconer I. R., Rowe J. M. Effect of prolactin on sodium and potassium concentrations in mammary alveolar tissue. Endocrinology. 1977 Jul;101(1):181–186. doi: 10.1210/endo-101-1-181. [DOI] [PubMed] [Google Scholar]
  11. Falconer I. R., Rowe J. M. Possible mechanism for action of prolactin on mammary cell sodium transport. Nature. 1975 Jul 24;256(5515):327–328. doi: 10.1038/256327a0. [DOI] [PubMed] [Google Scholar]
  12. Flückiger E., Billeter E., Wagner H. R. Inhibition of lactation in rabbits by 2-Br-alpha-Ergokryptine-mesilate (CB154). Arzneimittelforschung. 1976;26(1):51–53. [PubMed] [Google Scholar]
  13. Hart I. C. Effect of 2-bromo- -ergocryptine on milk yield and the level of prolactin and growth hormone in the blood of the goat at milking. J Endocrinol. 1973 Apr;57(1):179–180. doi: 10.1677/joe.0.0570179. [DOI] [PubMed] [Google Scholar]
  14. Houdebine L. M., Djiane J. Effet de l'ouabaïne sur l'action lactogène de la prolactine et sur le niveau des récepteurs prolactiniques mammaires. Biochimie. 1980;62(7):433–440. doi: 10.1016/s0300-9084(80)80059-9. [DOI] [PubMed] [Google Scholar]
  15. Johnson M. P., Wooding F. B. Adenosine triphosphatase distribution in mammary tissue. Histochem J. 1978 Mar;10(2):171–183. doi: 10.1007/BF01003302. [DOI] [PubMed] [Google Scholar]
  16. Keeler R., Wilson N. Vasopressin contamination as a cause of some apparent renal actions of prolactin. Can J Physiol Pharmacol. 1976 Dec;54(6):887–890. doi: 10.1139/y76-124. [DOI] [PubMed] [Google Scholar]
  17. Kraehenbuhl J. P. Dispersed mammary gland epithelial cells. I. Isolation and separation procedures. J Cell Biol. 1977 Feb;72(2):390–405. doi: 10.1083/jcb.72.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Mills B., Tupper J. T. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell. J Membr Biol. 1975;20(1-2):75–97. doi: 10.1007/BF01870629. [DOI] [PubMed] [Google Scholar]
  19. Peaker M., Taylor J. C. Milk secretion in the rabbit: changes during lactation and the mechanism of ion transport. J Physiol. 1975 Dec;253(2):527–545. doi: 10.1113/jphysiol.1975.sp011205. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. SANDRITTER W., MUELLER D., GENSECKE O. [Ultraviolet microspectrophotometric determination of the nucleic acid content of spermatozoa and diploid cells]. Acta Histochem. 1960 Oct 25;10:139–154. [PubMed] [Google Scholar]
  21. SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
  22. Spaggiare S., Wallach M. J., Tupper J. T. Potassium transport in normal and transformed mouse 3T3 cells. J Cell Physiol. 1976 Nov;89(3):403–416. doi: 10.1002/jcp.1040890306. [DOI] [PubMed] [Google Scholar]
  23. Wallick E. T., Lane L. K., Schwartz A. Biochemical mechanism of the sodium pump. Annu Rev Physiol. 1979;41:397–411. doi: 10.1146/annurev.ph.41.030179.002145. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES