Abstract
1. Ouabain-sensitive 86Rb+ uptake in slices of lactating rabbit mammary gland significantly increased after 20 min or 1 hr of incubation with ovine prolactin (NIH-P-S12; 1 microgram/ml.). 2. Total K+ content of the tissue significantly increased at 20 min of incubation with prolactin. 3. Neither vasopressin nor oxytocin, at concentrations of 2,20 or 40 mui.u./ml., had a significant effect on ouabain-sensitive 86Rb+ uptake or total K+ of the tissue after 30 min or 1 hr of incubation. 4. Tissue slices incubated in cycloheximide at 10 micrograms/ml. for up to 260 min showed a reduction in ouabain-sensitive 86Rb+ uptake and total K+ content, with half-lives of 115 and 63 min, respectively. 5. No consistent in vitro effect of prolactin on (Na+ + K+)-activated ATPase activity in homogenates, crude microsomal fractions or NaI-activated membrane fractions from lactating rabbit mammary gland was found. 6. After 3 hr of incubation of tissue slices in the presence or absence of prolactin (5 micrograms/ml.), no significant differences in the number of [G-3H]ouabain molecules bound per cell (5.2 X 10(4) and 6.2 X 10(4), respectively) or in the dissociation constant (KD) for ouabain binding (5.4 X 10(-7) M and 5.9 X 10(-7) M, respectively) were observed. 7. Incubation of the tissue with cycloheximide (10 micrograms/ml.) for 1-6 hr caused an exponential decrease in [G-3H]ouabain binding with a half-life of 3 hr. 8. It is concluded that prolactin stimulates the activity of the (Na+ + K+)-activated ATPase in slices of lactating rabbit mammary gland within one hour but over this period does not affect the number of ouabain-binding sites, which are apparently turned over with a half-life of 1-3 hr.
Full text
PDF
















Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Baker P. F., Willis J. S. Binding of the cardiac glycoside ouabain to intact cells. J Physiol. 1972 Jul;224(2):441–462. doi: 10.1113/jphysiol.1972.sp009904. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Birkinshaw M., Falconer I. R. The localization of prolactin labelled with radioactive iodine in rabbit mammary tissue. J Endocrinol. 1972 Nov;55(2):323–334. doi: 10.1677/joe.0.0550323. [DOI] [PubMed] [Google Scholar]
- Bond G. C., Pasley J. N., Koike T. I., Llerena L. Contamination of an ovine prolactin preparation with antidiuretic hormone. J Endocrinol. 1976 Oct;71(1):169–170. doi: 10.1677/joe.0.0710169. [DOI] [PubMed] [Google Scholar]
- Chipperfield A. R., Whittam R. Reconstitution of the sodium pump from protein and phosphatidylserine: features of ouabain binding. J Physiol. 1973 Apr;230(2):467–476. doi: 10.1113/jphysiol.1973.sp010198. [DOI] [PMC free article] [PubMed] [Google Scholar]
- De Pover A., Godfraind T. Interaction of ouabain with (Na+ + K+)ATPase from human heart and from guinea-pig heart. Biochem Pharmacol. 1979 Oct 15;28(20):3051–3056. doi: 10.1016/0006-2952(79)90612-9. [DOI] [PubMed] [Google Scholar]
- Djiane J., Durand P., Kelly P. A. Evolution of prolactin receptors in rabbit mammary gland during pregnancy and lactation. Endocrinology. 1977 May;100(5):1348–1356. doi: 10.1210/endo-100-5-1348. [DOI] [PubMed] [Google Scholar]
- Djiane J., Kelly P. A., Houdebine L. M. Effects of lysosomotropic agents, cytochalasin B and colchicine on the "down-regulation" of prolactin receptors in mammary gland explants. Mol Cell Endocrinol. 1980 May;18(2):87–98. doi: 10.1016/0303-7207(80)90084-2. [DOI] [PubMed] [Google Scholar]
- Erdmann E., Schoner W. Ouabain-receptor interactions in (Na + +K + )-ATPase preparations from different tissues and species. Determination of kinetic constants and dissociation constants. Biochim Biophys Acta. 1973 May 11;307(2):386–398. doi: 10.1016/0005-2736(73)90104-1. [DOI] [PubMed] [Google Scholar]
- Falconer I. R., Forsyth I. A., Wilson B. M., Dils R. Inhibition by low concentrations of ouabain of prolactin-induced lactogenesis in rabbit mammary-gland explants. Biochem J. 1978 Jun 15;172(3):509–516. doi: 10.1042/bj1720509. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Falconer I. R., Rowe J. M. Effect of prolactin on sodium and potassium concentrations in mammary alveolar tissue. Endocrinology. 1977 Jul;101(1):181–186. doi: 10.1210/endo-101-1-181. [DOI] [PubMed] [Google Scholar]
- Falconer I. R., Rowe J. M. Possible mechanism for action of prolactin on mammary cell sodium transport. Nature. 1975 Jul 24;256(5515):327–328. doi: 10.1038/256327a0. [DOI] [PubMed] [Google Scholar]
- Flückiger E., Billeter E., Wagner H. R. Inhibition of lactation in rabbits by 2-Br-alpha-Ergokryptine-mesilate (CB154). Arzneimittelforschung. 1976;26(1):51–53. [PubMed] [Google Scholar]
- Hart I. C. Effect of 2-bromo- -ergocryptine on milk yield and the level of prolactin and growth hormone in the blood of the goat at milking. J Endocrinol. 1973 Apr;57(1):179–180. doi: 10.1677/joe.0.0570179. [DOI] [PubMed] [Google Scholar]
- Houdebine L. M., Djiane J. Effet de l'ouabaïne sur l'action lactogène de la prolactine et sur le niveau des récepteurs prolactiniques mammaires. Biochimie. 1980;62(7):433–440. doi: 10.1016/s0300-9084(80)80059-9. [DOI] [PubMed] [Google Scholar]
- Johnson M. P., Wooding F. B. Adenosine triphosphatase distribution in mammary tissue. Histochem J. 1978 Mar;10(2):171–183. doi: 10.1007/BF01003302. [DOI] [PubMed] [Google Scholar]
- Keeler R., Wilson N. Vasopressin contamination as a cause of some apparent renal actions of prolactin. Can J Physiol Pharmacol. 1976 Dec;54(6):887–890. doi: 10.1139/y76-124. [DOI] [PubMed] [Google Scholar]
- Kraehenbuhl J. P. Dispersed mammary gland epithelial cells. I. Isolation and separation procedures. J Cell Biol. 1977 Feb;72(2):390–405. doi: 10.1083/jcb.72.2.390. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mills B., Tupper J. T. Cation permeability and ouabain-insensitive cation flux in the Ehrlich ascites tumor cell. J Membr Biol. 1975;20(1-2):75–97. doi: 10.1007/BF01870629. [DOI] [PubMed] [Google Scholar]
- Peaker M., Taylor J. C. Milk secretion in the rabbit: changes during lactation and the mechanism of ion transport. J Physiol. 1975 Dec;253(2):527–545. doi: 10.1113/jphysiol.1975.sp011205. [DOI] [PMC free article] [PubMed] [Google Scholar]
- SANDRITTER W., MUELLER D., GENSECKE O. [Ultraviolet microspectrophotometric determination of the nucleic acid content of spermatozoa and diploid cells]. Acta Histochem. 1960 Oct 25;10:139–154. [PubMed] [Google Scholar]
- SKOU J. C. ENZYMATIC BASIS FOR ACTIVE TRANSPORT OF NA+ AND K+ ACROSS CELL MEMBRANE. Physiol Rev. 1965 Jul;45:596–617. doi: 10.1152/physrev.1965.45.3.596. [DOI] [PubMed] [Google Scholar]
- Spaggiare S., Wallach M. J., Tupper J. T. Potassium transport in normal and transformed mouse 3T3 cells. J Cell Physiol. 1976 Nov;89(3):403–416. doi: 10.1002/jcp.1040890306. [DOI] [PubMed] [Google Scholar]
- Wallick E. T., Lane L. K., Schwartz A. Biochemical mechanism of the sodium pump. Annu Rev Physiol. 1979;41:397–411. doi: 10.1146/annurev.ph.41.030179.002145. [DOI] [PubMed] [Google Scholar]
