Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Jan;334:19–31. doi: 10.1113/jphysiol.1983.sp014477

The antagonism of amino acid-induced excitations of rat hippocampal CA1 neurones in vitro.

G L Collingridge, S J Kehl, H McLennan
PMCID: PMC1197297  PMID: 6134823

Abstract

1. The effects of the ionophoretic application of a number of excitatory amino acids and antagonists to the dendrites of CA1 neurones of rat hippocampal slices maintained in vitro were examined. Cells were excited by N-methyl-DL-aspartate (NMA), kainate, quisqualate, L-aspartate and L-glutamate; NMA was unique in causing cells to fire in bursts of repetitive discharges in contrast to the sustained firing seen with the other compounds. 2. D-(-)-alpha-aminoadipate (DAA) and (+/-)-2-amino-5-phosphonovalerate (APV) were selective NMA antagonists, the latter appearing to be the more potent; in addition both compounds potentiated the responses to kainate and quisqualate. L-glutamate excitations were affected less by APV than were those of L-aspartate. The antagonist properties of APV appeared to reside with the D-(-)-isomer. 3. gamma-D-glutamylglycine (DGG) in low ionophoretic doses inhibited NMA-, kainate- and aspartate-induced cell firing but at higher doses the quisqualate and glutamate responses were also decreased. 4. Kainate and NMA responses were blocked by D-(-)-2-amino-4-phosphonobutyrate (D-APB) which also had some action against the excitatory effects of L-aspartate. L-APB had no antagonistic effects, but often produced potentiation of amino acid excitations or was itself an excitant. 5. The effects of NMA and those of kainate and quisqualate were blocked by (+/-)-cis-2,3-piperidine dicarboxylate (PDA), but this compound itself had a direct excitatory effect. L-glutamate diethylester (GDEE) did not show specific antagonism of any amino acid excitations. 6. DGG and APV did not affect ACh excitations and these selective antagonists should be of value in studying the involvement of the excitatory amino acids in synaptic transmission in the hippocampus. Because they are less potent and/or have complicating direct effects PDA, GDEE, D- and L-APB may be less useful in this regard.

Full text

PDF
19

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Balcar V. J., Johnston G. A. High affinity uptake of transmitters: studies on the uptake of L-aspartate, GABA, L-glutamate and glycine in cat spinal cord. J Neurochem. 1973 Feb;20(2):529–539. doi: 10.1111/j.1471-4159.1973.tb12152.x. [DOI] [PubMed] [Google Scholar]
  2. Collingridge G. L., Davies J. An evaluation of D-alpha-aminoadipate and D-(and DL-)alpha-aminosuberate as selective antagonists of excitatory amino acids in the substantia nigra and mesencephalic reticular formation of the rat. Neuropharmacology. 1979 Feb;18(2):193–199. doi: 10.1016/0028-3908(79)90061-3. [DOI] [PubMed] [Google Scholar]
  3. Collingridge G. L., Kehl S. J., McLennan H. Excitatory amino acids in synaptic transmission in the Schaffer collateral-commissural pathway of the rat hippocampus. J Physiol. 1983 Jan;334:33–46. doi: 10.1113/jphysiol.1983.sp014478. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Davies J., Evans R. H., Francis A. A., Jones A. W., Watkins J. C. Antagonism of excitatory amino acid-induced and synaptic excitation of spinal neurones by cis-2,3-piperidine dicarboxylate. J Neurochem. 1981 Mar;36(3):1305–1307. doi: 10.1111/j.1471-4159.1981.tb01736.x. [DOI] [PubMed] [Google Scholar]
  5. Davies J., Francis A. A., Jones A. W., Watkins J. C. 2-Amino-5-phosphonovalerate (2APV), a potent and selective antagonist of amino acid-induced and synaptic excitation. Neurosci Lett. 1981 Jan 1;21(1):77–81. doi: 10.1016/0304-3940(81)90061-6. [DOI] [PubMed] [Google Scholar]
  6. Davies J., Watkins J. C. Actions of D and L forms of 2-amino-5-phosphonovalerate and 2-amino-4-phosphonobutyrate in the cat spinal cord. Brain Res. 1982 Mar 11;235(2):378–386. doi: 10.1016/0006-8993(82)91017-4. [DOI] [PubMed] [Google Scholar]
  7. Davies J., Watkins J. C. Differentiation of kainate and quisqualate receptors in the cat spinal cord by selective antagonism with gamma-D(and L)-glutamylglycine. Brain Res. 1981 Feb 9;206(1):172–177. doi: 10.1016/0006-8993(81)90111-6. [DOI] [PubMed] [Google Scholar]
  8. Davies J., Watkins J. C. Selective antagonism of amino acid-induced and synaptic excitation in the cat spinal cord. J Physiol. 1979 Dec;297(0):621–635. doi: 10.1113/jphysiol.1979.sp013060. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Dingledine R., Dodd J., Kelly J. S. The in vitro brain slice as a useful neurophysiological preparation for intracellular recording. J Neurosci Methods. 1980 Aug;2(4):323–362. doi: 10.1016/0165-0270(80)90002-3. [DOI] [PubMed] [Google Scholar]
  10. Dodd J., Dingledine R., Kelly J. S. The excitatory action of acetylcholine on hippocampal neurones of the guinea pig and rat maintained in vitro. Brain Res. 1981 Feb 23;207(1):109–127. doi: 10.1016/0006-8993(81)90682-x. [DOI] [PubMed] [Google Scholar]
  11. Dudar J. D. In vitro excitation of hippocampal pyramidal cell dendrites by glutamic acid. Neuropharmacology. 1974 Nov;13(10-11):1083–1089. doi: 10.1016/0028-3908(74)90099-9. [DOI] [PubMed] [Google Scholar]
  12. Dunwiddie T., Madison D., Lynch G. Synaptic transmission is required for initiation of long-term potentiation. Brain Res. 1978 Jul 14;150(2):413–417. doi: 10.1016/0006-8993(78)90293-7. [DOI] [PubMed] [Google Scholar]
  13. Evans R. H., Francis A. A., Hunt K., Oakes D. J., Watkins J. C. Antagonism of excitatory amino acid-induced responses and of synaptic excitation in the isolated spinal cord of the frog. Br J Pharmacol. 1979 Dec;67(4):591–603. doi: 10.1111/j.1476-5381.1979.tb08706.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Evans R. H., Francis A. A., Jones A. W., Smith D. A., Watkins J. C. The effects of a series of omega-phosphonic alpha-carboxylic amino acids on electrically evoked and excitant amino acid-induced responses in isolated spinal cord preparations. Br J Pharmacol. 1982 Jan;75(1):65–75. doi: 10.1111/j.1476-5381.1982.tb08758.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Evans R. H., Francis A. A., Watkins J. C. Mg2+-like selective antagonism of excitatory amino acid-induced responses by alpha, epsilon-diaminopimelic acid, D-alpha-aminoadipate and HA-966 in isolated spinal cord of frog and immature rat. Brain Res. 1978 Jun 16;148(2):536–542. doi: 10.1016/0006-8993(78)90744-8. [DOI] [PubMed] [Google Scholar]
  16. Hicks T. P., Hall J. G., McLennan H. Ranking of excitatory amino acids by the antagonists glutamic acid diethylester and D-alpha-aminoadipic acid. Can J Physiol Pharmacol. 1978 Dec;56(6):901–907. doi: 10.1139/y78-143. [DOI] [PubMed] [Google Scholar]
  17. Hicks T. P., McLennan H. Amino acids and the synaptic pharmacology of granule cells in the dentate gyrus of the rat. Can J Physiol Pharmacol. 1979 Sep;57(9):973–978. doi: 10.1139/y79-146. [DOI] [PubMed] [Google Scholar]
  18. Honoré T., Krogsgaard-Larsen P., Hansen J. J., Lauridsen J. Glutamate and aspartate agonists structurally related to ibotenic acid. Mol Cell Biochem. 1981 Aug 11;38(Spec No)(Pt 1):123–128. doi: 10.1007/BF00235691. [DOI] [PubMed] [Google Scholar]
  19. Hori N., Auker C. R., Braitman D. J., Carpenter D. O. Lateral olfactory tract transmitter: glutamate, aspartate, or neither? Cell Mol Neurobiol. 1981 Mar;1(1):115–120. doi: 10.1007/BF00736043. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Johnston G. A., Kennedy S. M., Twitchin B. Action of the neurotoxin kainic acid on high affinity uptake of L-glutamic acid in rat brain slices. J Neurochem. 1979 Jan;32(1):121–127. doi: 10.1111/j.1471-4159.1979.tb04518.x. [DOI] [PubMed] [Google Scholar]
  21. Koerner J. F., Cotman C. W. Micromolar L-2-amino-4-phosphonobutyric acid selectively inhibits perforant path synapses from lateral entorhinal cortex. Brain Res. 1981 Jul 6;216(1):192–198. doi: 10.1016/0006-8993(81)91288-9. [DOI] [PubMed] [Google Scholar]
  22. Laurberg S. Commissural and intrinsic connections of the rat hippocampus. J Comp Neurol. 1979 Apr 15;184(4):685–708. doi: 10.1002/cne.901840405. [DOI] [PubMed] [Google Scholar]
  23. Lodge D., Curtis D. R., Johnston G. A., Bornstein J. C. In vivo inactivation of quisqualate: studies in the cat spinal cord. Brain Res. 1980 Jan 27;182(2):491–495. doi: 10.1016/0006-8993(80)91211-1. [DOI] [PubMed] [Google Scholar]
  24. Lodge D., Headley P. M., Curtis D. R. Selective antagonism by D-alpha-aminoadipate of amino acid and synaptic excitation of cat spinal neurons. Brain Res. 1978 Sep 8;152(3):603–608. doi: 10.1016/0006-8993(78)91117-4. [DOI] [PubMed] [Google Scholar]
  25. Lynch G., Schubert P. The use of in vitro brain slices for multidisciplinary studies of synaptic function. Annu Rev Neurosci. 1980;3:1–22. doi: 10.1146/annurev.ne.03.030180.000245. [DOI] [PubMed] [Google Scholar]
  26. McLennan H., Hicks T. P., Liu J. R. On the configuration of the receptors for excitatory amino acids. Neuropharmacology. 1982 Jun;21(6):549–554. doi: 10.1016/0028-3908(82)90046-6. [DOI] [PubMed] [Google Scholar]
  27. McLennan H., Liu J. The action of six antagonists of the excitatory amino acids on neurones of the rat spinal cord. Exp Brain Res. 1982;45(1-2):151–156. doi: 10.1007/BF00235774. [DOI] [PubMed] [Google Scholar]
  28. McLennan H., Lodge D. The antagonism of amino acid-induced excitation of spinal neurones in the cat. Brain Res. 1979 Jun 15;169(1):83–90. doi: 10.1016/0006-8993(79)90375-5. [DOI] [PubMed] [Google Scholar]
  29. McLennan H. On the nature of the receptors for various excitatory amino acids in the mammalian central nervous system. Adv Biochem Psychopharmacol. 1981;27:253–262. [PubMed] [Google Scholar]
  30. McLennan H. The isomers of 2-amino-5-phosphonovalerate as excitatory amino acid antagonists--a reappraisal. Eur J Pharmacol. 1982 Apr 8;79(1-2):135–137. doi: 10.1016/0014-2999(82)90585-4. [DOI] [PubMed] [Google Scholar]
  31. Schwartzkroin P. A., Andersen P. Glutamic acid sensitivity of dendrites in hippocampal slices in vitro. Adv Neurol. 1975;12:45–51. [PubMed] [Google Scholar]
  32. Schwartzkroin P. A. Characteristics of CA1 neurons recorded intracellularly in the hippocampal in vitro slice preparation. Brain Res. 1975 Mar 7;85(3):423–436. doi: 10.1016/0006-8993(75)90817-3. [DOI] [PubMed] [Google Scholar]
  33. Segal M. The actions of glutamic acid on neurons in the rat hippocampal slice. Adv Biochem Psychopharmacol. 1981;27:217–225. [PubMed] [Google Scholar]
  34. Skerritt J. H., Johnston G. A. Uptake and release of N-methyl-D-aspartate by rat brain slices. J Neurochem. 1981 Mar;36(3):881–885. doi: 10.1111/j.1471-4159.1981.tb01676.x. [DOI] [PubMed] [Google Scholar]
  35. Spencer H. J., Gribkoff V. K., Cotman C. W., Lynch G. S. GDEE antagonism of iontophoretic amino acid excitations in the intact hippocampus and in the hippocampal slice preparation. Brain Res. 1976 Apr 9;105(3):471–481. doi: 10.1016/0006-8993(76)90594-1. [DOI] [PubMed] [Google Scholar]
  36. Storm-Mathisen J. Glutamate in hippocampal pathways. Adv Biochem Psychopharmacol. 1981;27:43–55. [PubMed] [Google Scholar]
  37. Storm-Mathisen J. Localization of transmitter candidates in the brain: the hippocampal formation as a model. Prog Neurobiol. 1977;8(2):119–181. doi: 10.1016/0301-0082(77)90013-2. [DOI] [PubMed] [Google Scholar]
  38. Watkins J. C. Pharmacology of excitatory amino acid transmitters. Adv Biochem Psychopharmacol. 1981;29:205–212. [PubMed] [Google Scholar]
  39. Wheal H. V., Miller J. J. Pharmacological identification of acetylcholine and glutamate excitatory systems in the dentate gyrus of the rat. Brain Res. 1980 Jan 20;182(1):145–155. doi: 10.1016/0006-8993(80)90837-9. [DOI] [PubMed] [Google Scholar]
  40. White W. F., Nadler J. V., Cotman C. W. The effect of acidic amino acid antagonists on synaptic transmission in the hippocampal formation in vitro. Brain Res. 1979 Mar 23;164:177–194. doi: 10.1016/0006-8993(79)90014-3. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES