Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Feb;335:75–88. doi: 10.1113/jphysiol.1983.sp014520

Effect of amiloride on sodium and water reabsorption in the rabbit gall-bladder.

O Frederiksen
PMCID: PMC1197339  PMID: 6875899

Abstract

The effects of the Na+-channel-blocking diuretic agent amiloride were assessed in the rabbit gall-bladder epithelium, a low-resistance epithelium with an isosmotic, coupled NaCl transport mechanism. Amiloride caused a rapid, reversible, and dose-dependent decrease in fluid absorption when applied from the mucosal side in concentrations between 8.8 X 10(-5) and 1.76 X 10(-3) M. These concentrations were without effect from the serosal side, suggesting an action of amiloride in the luminal cell membrane as in high-resistance epithelia. Amiloride did not affect the epithelial resistance or the passive serosa-to-mucosa Na+ flux, while net Na+ and water reabsorption were inhibited in parallel. Thus, amiloride did not affect the paracellular tight junction pathway, but inhibited a transcellular, coupled salt and water transport mechanism. The kinetics of the amiloride effect were of a Michaelis-Menten type. The dose of amiloride giving 50% inhibition of fluid absorption (ID50) was 4 X 10(-4) M, a value about three orders of magnitude higher than in high-resistance, Na+-retaining epithelia. The percentage inhibitory effect at each concentration of amiloride increased with increasing rate of spontaneous (control) fluid transport, reaching maximal responses fitting a Michaelis-Menten kinetic with an ID50 of 1.5 X 10(-4) M. No effects of changing the extracellular Na+ concentration between 51 and 145 mequiv/l on the maximal inhibitory effect of amiloride on Na+ and water reabsorption were observed. This suggests a non-competitive type of action of amiloride on a Na+-dependent isosmotic fluid transport mechanism. Removal of mucosal Ca2+ did not alter the effect of amiloride. The implications of these findings are discussed in relation to concepts concerning the mechanism of isosmotic salt and water transport. The data are compatible with the concept that amiloride interferes with a Na+-dependent formation and transcellular transport of isosmotic fluid volumes in a sequestered compartment in the epithelial cells.

Full text

PDF
75

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Benos D. J., Mandel L. J., Balaban R. S. On the mechanism of the amiloride-sodium entry site interaction in anuran skin epithelia. J Gen Physiol. 1979 Mar;73(3):307–326. doi: 10.1085/jgp.73.3.307. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bentley P. J. Amiloride: a potent inhibitor of sodium transport across the toad bladder. J Physiol. 1968 Mar;195(2):317–330. doi: 10.1113/jphysiol.1968.sp008460. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. CURRAN P. F., GILL J. R., Jr The effect of calcium on sodium transport by frog skin. J Gen Physiol. 1962 Mar;45:625–641. doi: 10.1085/jgp.45.4.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CURRAN P. F., HERRERA F. C., FLANIGAN W. J. The effect of Ca and antidiuretic hormone on Na transport across frog skin. II. Sites and mechanisms of action. J Gen Physiol. 1963 May;46:1011–1027. doi: 10.1085/jgp.46.5.1011. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Carrasquer G., Fravert D. G., Olson A. K. Effect of intraluminal amiloride on Na transport in the rat proximal tubule. Proc Soc Exp Biol Med. 1974 Jun;146(2):478–480. doi: 10.3181/00379727-146-38130. [DOI] [PubMed] [Google Scholar]
  6. Cuthbert A. W., Shum W. K. Amiloride and the sodium channel. Naunyn Schmiedebergs Arch Pharmacol. 1974;281(3):261–269. doi: 10.1007/BF00500595. [DOI] [PubMed] [Google Scholar]
  7. Cuthbert A. W. Sodium entry step in transporting epithelia: results of ligand-binding studies. Soc Gen Physiol Ser. 1981;36:181–195. [PubMed] [Google Scholar]
  8. Cuthbert A. W., Wong P. Y. The role of calcium ions in the interaction of amiloride with membrane receptors. Mol Pharmacol. 1972 Mar;8(2):222–229. [PubMed] [Google Scholar]
  9. DIAMOND J. M. TRANSPORT OF SALT AND WATER IN RABBIT AND GUINEA PIG GALL BLADDER. J Gen Physiol. 1964 Sep;48:1–14. doi: 10.1085/jgp.48.1.1. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. DIAMOND J. M. The reabsorptive function of the gall-bladder. J Physiol. 1962 May;161:442–473. doi: 10.1113/jphysiol.1962.sp006898. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Diamond J. M., Bossert W. H. Standing-gradient osmotic flow. A mechanism for coupling of water and solute transport in epithelia. J Gen Physiol. 1967 Sep;50(8):2061–2083. doi: 10.1085/jgp.50.8.2061. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Duarte C. G., Chomety F., Giebisch G. Effect of amiloride, ouabain, and furosemide on distal tubular function in the rat. Am J Physiol. 1971 Aug;221(2):632–640. doi: 10.1152/ajplegacy.1971.221.2.632. [DOI] [PubMed] [Google Scholar]
  13. Eldrup E., Frederiksen O., Møllgård K., Rostgaard J. Effects of a small serosal hydrostatic pressure on sodium and water transport and morphology in rabbit gall-bladder. J Physiol. 1982 Oct;331:67–85. doi: 10.1113/jphysiol.1982.sp014365. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Frederiksen O. Functional distinction between two transport mechanisms in rabbit gall-bladder epithelium by use of ouabain, ethacrynic acid and metabolic inhibitors. J Physiol. 1978 Jul;280:373–387. doi: 10.1113/jphysiol.1978.sp012389. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Frederiksen O., Leyssac P. P. Effects of cytochalasin B and dimethylsulphoxide on isosmotic fluid transport by rabbit gall-bladder in vitro. J Physiol. 1977 Feb;265(1):103–118. doi: 10.1113/jphysiol.1977.sp011707. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Frederiksen O., Leyssac P. P. Transcellular transport of isosmotic volumes by the rabbit gall-bladder in vitro. J Physiol. 1969 Mar;201(1):201–224. doi: 10.1113/jphysiol.1969.sp008751. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Frederiksen O., Møllgård K., Rostgaard J. Lack of correlation between transepithelial transport capacity and paracellular pathway ultrastructure in Alcian blue-treated rabbit gallbladders. J Cell Biol. 1979 Nov;83(2 Pt 1):383–393. doi: 10.1083/jcb.83.2.383. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Frizzell R. A., Dugas M. C., Schultz S. G. Sodium chloride transport by rabbit gallbladder. Direct evidence for a coupled NaCl influx process. J Gen Physiol. 1975 Jun;65(6):769–795. doi: 10.1085/jgp.65.6.769. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Frizzell R. A., Field M., Schultz S. G. Sodium-coupled chloride transport by epithelial tissues. Am J Physiol. 1979 Jan;236(1):F1–F8. doi: 10.1152/ajprenal.1979.236.1.F1. [DOI] [PubMed] [Google Scholar]
  20. Frömter E., Gessner K. Effect of inhibitors and diuretics on electrical potential differences in rat kidney proximal tubule. Pflugers Arch. 1975 Jun 26;357(3-4):209–224. doi: 10.1007/BF00585976. [DOI] [PubMed] [Google Scholar]
  21. Hill A. Salt-water coupling in leaky epithelia. J Membr Biol. 1980 Oct 31;56(3):177–182. doi: 10.1007/BF01869474. [DOI] [PubMed] [Google Scholar]
  22. Hénin S., Cremaschi D. Transcellular ion route in rabbit gallbladder. Electric properties of the epithelial cells. Pflugers Arch. 1975;355(2):125–139. doi: 10.1007/BF00581828. [DOI] [PubMed] [Google Scholar]
  23. KOEFOED-JOHNSEN V., USSING H. H. The nature of the frog skin potential. Acta Physiol Scand. 1958 Jun 2;42(3-4):298–308. doi: 10.1111/j.1748-1716.1958.tb01563.x. [DOI] [PubMed] [Google Scholar]
  24. Leyssac P. P., Bukhave K., Frederiksen O. Inhibitory effect of prostaglandins on isosmotic fluid transport by rabbit gall-bladder in vitro, and its modification by blocade of endogenous PGE-Biosynthesis with indomethacin. Acta Physiol Scand. 1974 Dec;92(4):496–507. doi: 10.1111/j.1748-1716.1974.tb05771.x. [DOI] [PubMed] [Google Scholar]
  25. Meng K. Comparison of the local effects of amiloride hydrochloride on the isotonic fluid absorption in the distal and proximal convoluted tubule. Pflugers Arch. 1975;357(1-2):91–99. doi: 10.1007/BF00584547. [DOI] [PubMed] [Google Scholar]
  26. Reuss L., Finn A. L. Electrical properties of the cellular transepithelial pathway in Necturus gallbladder. II. Ionic permeability of the apical cell membrane. J Membr Biol. 1975 Dec 4;25(1-2):141–161. doi: 10.1007/BF01868572. [DOI] [PubMed] [Google Scholar]
  27. Rostgaard J., Frederiksen O. Fluid transport and dimensions of epithelial cells and intercellular spaces in frog gallbladder. Studies in the living state, and during processing for electron microscopy. Cell Tissue Res. 1981;215(2):223–247. doi: 10.1007/BF00239111. [DOI] [PubMed] [Google Scholar]
  28. Salako L. A., Smith A. J. Changes in sodium pool and kinetics of sodium transport in frog skin produced by amiloride. Br J Pharmacol. 1970 May;39(1):99–109. doi: 10.1111/j.1476-5381.1970.tb09559.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. WHEELER H. O. TRANSPORT OF ELECTROLYTES AND WATER ACROSS WALL OF RABBIT GALL BLADDER. Am J Physiol. 1963 Sep;205:427–438. doi: 10.1152/ajplegacy.1963.205.3.427. [DOI] [PubMed] [Google Scholar]
  30. Wilczewski T. W., Olson A. K., Carrasquer G. Effect of amiloride, furosemide, and ethacrynic acid on Na transport in the rat kidney. Proc Soc Exp Biol Med. 1974 Apr;145(4):1301–1305. doi: 10.3181/00379727-145-38001. [DOI] [PubMed] [Google Scholar]
  31. van Os C. H., Slegers J. F. The electrical potential profile of gallbladder epithelium. J Membr Biol. 1975 Dec 4;24(3-4):341–363. doi: 10.1007/BF01868631. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES