Abstract
The angular displacements necessary for 70% correct detection were determined in normal subjects at the shoulder and elbow joints and at the terminal joint of the middle finger. Angular velocities of displacement between 0.125 degrees and 160 degrees/s were tested. Each joint was tested in the mid-range of its normal excursion. The joints were carefully supported for testing and the muscles acting at the joints were relaxed. When assessed in terms of angular displacements and angular velocities, proprioceptive performance at the shoulder and elbow joints was superior to that at the finger joint. Optimal performance at the finger joint was attained over the range of angular velocities from 10 degrees to 80 degrees/s. Optimal performance at both more proximal joints was optimal over a wider range (2 degrees-80 degrees/s). Active pointing movements made without vision of the moving part were performed at each joint at velocities within the range of optimal proprioceptive performance. However, when detection levels and displacement velocities were expressed in terms of linear displacements and velocities at the finger tip for all three joints, the finger joint gave the best performance and the shoulder the worst. In practical terms, therefore, displacements of a given linear extent are best detected if they move distal joints and worst if they move proximal joints. For the elbow and finger joints the detection level and velocity data were expressed also in terms of proportional changes in the lengths of muscles operating at these joints, and as proportional changes in the distance between the points of attachment of the joint capsules. Analysis in terms of proportional changes of muscle length showed remarkably similar performance levels at both joints. This suggests that intramuscular receptors are important determinants of proprioceptive performance. Analysis in terms of joint capsular displacement did not unify the data: on this form of analysis proprioceptive performance at the elbow joint was superior.
Full text
PDF














Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Clark F. J., Burgess P. R. Slowly adapting receptors in cat knee joint: can they signal joint angle? J Neurophysiol. 1975 Nov;38(6):1448–1463. doi: 10.1152/jn.1975.38.6.1448. [DOI] [PubMed] [Google Scholar]
- Davis J. N. The response to stretch of human intercostal muscle spindles studied in vitro. J Physiol. 1975 Aug;249(3):561–579. doi: 10.1113/jphysiol.1975.sp011030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Ferrell W. R. The adequacy of stretch receptors in the cat knee joint for signalling joint angle throughout a full range of movement. J Physiol. 1980 Feb;299:85–99. doi: 10.1113/jphysiol.1980.sp013112. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Gandevia S. C., Hall L. A., McCloskey D. I., Potter E. K. Proprioceptive sensation at the terminal joint of the middle finger. J Physiol. 1983 Feb;335:507–517. doi: 10.1113/jphysiol.1983.sp014547. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin G. M., Hulliger M., Matthews P. B. The effects of fusimotor stimulation during small amplitude stretching on the frequency-response of the primary ending of the mammalian muscle spindle. J Physiol. 1975 Dec;253(1):175–206. doi: 10.1113/jphysiol.1975.sp011186. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goodwin G. M., McCloskey D. I., Matthews P. B. The contribution of muscle afferents to kinaesthesia shown by vibration induced illusions of movement and by the effects of paralysing joint afferents. Brain. 1972;95(4):705–748. doi: 10.1093/brain/95.4.705. [DOI] [PubMed] [Google Scholar]
- Hasan Z., Houk J. C. Transition in sensitivity of spindle receptors that occurs when muscle is stretched more than a fraction of a millimeter. J Neurophysiol. 1975 May;38(3):673–689. doi: 10.1152/jn.1975.38.3.673. [DOI] [PubMed] [Google Scholar]
- Kokmen E., Bossemeyer R. W., Jr, Williams W. J. Quantitation of motion perception in the digits: a psychophysical study in normal human subjects. Ann Neurol. 1977 Oct;2(4):279–284. doi: 10.1002/ana.410020404. [DOI] [PubMed] [Google Scholar]
- Matthews P. B. Muscle afferents and kinaesthesia. Br Med Bull. 1977 May;33(2):137–142. doi: 10.1093/oxfordjournals.bmb.a071413. [DOI] [PubMed] [Google Scholar]
- Matthews P. B., Stein R. B. The sensitivity of muscle spindle afferents to small sinusoidal changes of length. J Physiol. 1969 Feb;200(3):723–743. doi: 10.1113/jphysiol.1969.sp008719. [DOI] [PMC free article] [PubMed] [Google Scholar]
- McCloskey D. I. Kinesthetic sensibility. Physiol Rev. 1978 Oct;58(4):763–820. doi: 10.1152/physrev.1978.58.4.763. [DOI] [PubMed] [Google Scholar]
- McKeon B., Burke D. Component of muscle spindle discharge related to arterial pulse. J Neurophysiol. 1981 Oct;46(4):788–796. doi: 10.1152/jn.1981.46.4.788. [DOI] [PubMed] [Google Scholar]
- PROVINS K. A. The effect of peripheral nerve block on the appreciation and execution of finger movements. J Physiol. 1958 Aug 29;143(1):55–67. doi: 10.1113/jphysiol.1958.sp006043. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Vallbo A. B. Afferent discharge from human muscle spindles in non-contracting muscles. Steady state impulse frequency as a function of joint angle. Acta Physiol Scand. 1974 Feb;90(2):303–318. doi: 10.1111/j.1748-1716.1974.tb05593.x. [DOI] [PubMed] [Google Scholar]
- Vallbo A. B., Hagbarth K. E., Torebjörk H. E., Wallin B. G. Somatosensory, proprioceptive, and sympathetic activity in human peripheral nerves. Physiol Rev. 1979 Oct;59(4):919–957. doi: 10.1152/physrev.1979.59.4.919. [DOI] [PubMed] [Google Scholar]
