Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Feb;335:655–681. doi: 10.1113/jphysiol.1983.sp014557

Classical tritanopia

M Alpern 1,2, K Kitahara 1,2,*, D H Krantz 1,2
PMCID: PMC1197376  PMID: 6603508

Abstract

1. A subject who has suffered from central serous chorio-retinopathy in his left eye noticed differences in the colour of a given light as perceived by each eye alone. Standard screening tests (colour order and colour matching) indicated a tritan defect in the left eye; the right eye was normal on these tests.

2. The subject was dichromatic in his left eye, trichromatic in his right. The left-eye distimulus colour-matching functions, spectral luminosity, and wave-length discrimination functions were indistinguishable from corresponding data for congenital tritanopia. Comparable right-eye data were normal.

3. Spectral dichromatic colour matches were invariant under changes of intensity and under addition of a common light to both halves of the field. (Grassmann's laws of linearity are satisfied.)

4. Increment threshold versus intensity (t.v.i.) curves for a blue (481·9 nm) test on a yellow background yielded the normal three branches (for Π4(μ), Π1(μ) and Π3(μ) respectively) in the trichromatic eye. In the dichromatic eye a single mechanism was found. It had the field sensitivity of Π4(μ) whether measured with the blue, or with a violet (429·5 nm) test. No trace of Π3(μ) or Π1(μ) was ever discovered in the tritanopic eye. Both are normal in the trichromatic eye.

5. The field sensitivities of Π4, Π5 and Π3 of the normal eye are well fitted by linear combinations of the spectral colour-matching functions of the trichromatic eye. Π4 and Π5 of the dichromatic eye are well fitted by linear combinations of the tritanopic matching functions.

6. Colour matches made by the trichromatic eye do not match when viewed by the tritanopic eye, almost certainly because the ocular media of the two eyes have wave-length-dependent differences in absorption. For the largest difference (430 nm) the trichromatic eye transmits about 2·2 times more light than its fellow. When allowance is made for these differences, the field sensitivities of Π4 and Π5 of the two eyes do not differ. The field sensitivities of Π4 and Π5 of the normal eye, on the other hand, differ significantly from those of the average spectra obtained on four normal trichromats by Stiles, in a way that cannot be attributed to differences in transmittance of ocular media.

7. It is concluded that classical (or acquired) tritanopia is not distinguishable in its manifestations from congenital tritanopia; furthermore, tritanopia can be regarded as a reduced form of normal trichromacy, once allowances are made for absorption of the ocular media and for variations among normal trichromats.

8. Despite extensive search no evidence could be uncovered which might exclude the hypothesis that the colour vision in tritanopia depends exclusively upon absorption in only two foveal cone pigments, one long-wave-absorbing and one medium-wave-absorbing.

Full text

PDF
655

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Alpern M., Bastian B., Pugh E. N., Jr, Gras W. Altered ocular pigments, photostable and labile: two causes of deuteranomalous trichromacy. Mod Probl Ophthalmol. 1976;17:273–291. [PubMed] [Google Scholar]
  2. Alpern M., Kitahara K., Krantz D. H. Perception of colour in unilateral tritanopia. J Physiol. 1983 Feb;335:683–697. doi: 10.1113/jphysiol.1983.sp014558. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Alpern M., Moeller J. The red and green cone visual pigments of deuternomalous trichromacy. J Physiol. 1977 Apr;266(3):647–675. doi: 10.1113/jphysiol.1977.sp011786. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Alpern M., Pugh E. N., Jr Variation in the action spectrum of erythrolabe among deuteranopes. J Physiol. 1977 Apr;266(3):613–646. doi: 10.1113/jphysiol.1977.sp011785. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Alpern M. Tritanopia. Am J Optom Physiol Opt. 1976 Jul;53(7):340–349. doi: 10.1097/00006324-197607000-00003. [DOI] [PubMed] [Google Scholar]
  6. Alpern M., Wake T. Cone pigments in human deutan colour vision defects. J Physiol. 1977 Apr;266(3):595–612. doi: 10.1113/jphysiol.1977.sp011784. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Alpern M. What is it that confines in a world without color? Invest Ophthalmol. 1974 Sep;13(9):648–674. [PubMed] [Google Scholar]
  8. Alpern M., Zwas F. The wavelength variation of the directional sensitivity of the Stiles pi1(mu). Vision Res. 1979;19(10):1077–1087. doi: 10.1016/0042-6989(79)90002-6. [DOI] [PubMed] [Google Scholar]
  9. Bowmaker J. K., Dartnall H. J., Lythgoe J. N., Mollon J. D. The visual pigments of rods and cones in the rhesus monkey, Macaca mulatta. J Physiol. 1978 Jan;274:329–348. doi: 10.1113/jphysiol.1978.sp012151. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Bowmaker J. K., Dartnall H. J. Visual pigments of rods and cones in a human retina. J Physiol. 1980 Jan;298:501–511. doi: 10.1113/jphysiol.1980.sp013097. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Estévez O., Cavonius C. R. Human color perception and Stiles' pi mechanisms. Vision Res. 1977;17(3):417–422. doi: 10.1016/0042-6989(77)90033-5. [DOI] [PubMed] [Google Scholar]
  12. FISCHER F. P., BOUMAN M. A., TEN DOESSCHATE J. A case of tritanopy. Doc Ophthalmol. 1951;5-6:73–87. doi: 10.1007/BF00143654. [DOI] [PubMed] [Google Scholar]
  13. JAEGER W., NOVER A. Störungen des Lichtsinns und Farbensinns bei Chorioretinitis centralis serosa. Albrecht Von Graefes Arch Ophthalmol. 1951;152(1):111–120. [PubMed] [Google Scholar]
  14. Krantz D. H. Measurement structures and psychological laws. Science. 1972 Mar 31;175(4029):1427–1435. doi: 10.1126/science.175.4029.1427. [DOI] [PubMed] [Google Scholar]
  15. Krill A. E., Smith V. C., Pokorny J. Further studies supporting the identity of congenital tritanopia and hereditary dominant optic atrophy. Invest Ophthalmol. 1971 Jun;10(6):457–465. [PubMed] [Google Scholar]
  16. Krill A. E., Smith V. C., Pokorny J. Similarities between congenital tritan defects and dominant optic-nerve atrophy: coincidence or identity? J Opt Soc Am. 1970 Aug;60(8):1132–1139. doi: 10.1364/josa.60.001132. [DOI] [PubMed] [Google Scholar]
  17. Mitchell D. E., Rushton W. A. Visual pigments in dichromats. Vision Res. 1971 Oct;11(10):1033–1043. doi: 10.1016/0042-6989(71)90110-6. [DOI] [PubMed] [Google Scholar]
  18. Neuhann T., Kalmus H., Jaeger W. Ophthalmological findings in the tritans, described by Wright and Kalmus. Mod Probl Ophthalmol. 1976;17:135–142. [PubMed] [Google Scholar]
  19. Pugh E. N., Jr, Sigel C. Evaluation of the candidacy of the pi-mechanisms of Stiles for color-matching fundamentals. Vision Res. 1978;18(3):317–330. doi: 10.1016/0042-6989(78)90166-9. [DOI] [PubMed] [Google Scholar]
  20. RUSHTON W. A. A CONE PIGMENT IN THE PROTANOPE. J Physiol. 1963 Sep;168:345–359. doi: 10.1113/jphysiol.1963.sp007196. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. RUSHTON W. A. A FOVEAL PIGMENT IN THE DEUTERANOPE. J Physiol. 1965 Jan;176:24–37. doi: 10.1113/jphysiol.1965.sp007532. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. SPERLING H. G. Case of congenital tritanopia with implications for a trichromatic model of color reception. J Opt Soc Am. 1960 Feb;50:156–163. doi: 10.1364/josa.50.000156. [DOI] [PubMed] [Google Scholar]
  23. Smith D. P., Cole B. L., Isaacs A. Congenital tritanopia without neuroretinal disease. Invest Ophthalmol. 1973 Aug;12(8):608–617. [PubMed] [Google Scholar]
  24. Smith D. P. Color naming and hue discrimination in congenital tritanopia and tritanomaly. Vision Res. 1973 Feb;13(2):209–218. [PubMed] [Google Scholar]
  25. Smith V. C., Pokorny J. Spectral sensitivity of the foveal cone photopigments between 400 and 500 nm. Vision Res. 1975 Feb;15(2):161–171. doi: 10.1016/0042-6989(75)90203-5. [DOI] [PubMed] [Google Scholar]
  26. THOMSON L. C., WRIGHT W. D. The convergence of the tritanopic confusion loci and the derivation of the fundamental response functions. J Opt Soc Am. 1953 Oct;43(10):890–894. doi: 10.1364/josa.43.000890. [DOI] [PubMed] [Google Scholar]
  27. Voke-Fletcher J., Fletcher R. J. A case of tritanopia. Mod Probl Ophthalmol. 1978;19:229–231. [PubMed] [Google Scholar]
  28. Vos J. J., Walraven P. L. On the derivation of the foveal receptor primaries. Vision Res. 1971 Aug;11(8):799–818. doi: 10.1016/0042-6989(71)90003-4. [DOI] [PubMed] [Google Scholar]
  29. WALD G. THE RECEPTORS OF HUMAN COLOR VISION. Science. 1964 Sep 4;145(3636):1007–1016. doi: 10.1126/science.145.3636.1007. [DOI] [PubMed] [Google Scholar]
  30. WALLS G. L. A branched-pathway schema for the color-vision system and some of the evidence for it. Am J Ophthalmol. 1955 Feb;39(2 Pt 2):8–23. doi: 10.1016/0002-9394(55)90005-2. [DOI] [PubMed] [Google Scholar]
  31. WALLS G. L., MATHEWS R. W. New means of studying color blindness and normal foveal color vision, with some results and their genetical implications. Publ Psychol. 1952 Apr 29;7(1):1–172. [PubMed] [Google Scholar]
  32. WRIGHT W. D. The characteristics of tritanopia. J Opt Soc Am. 1952 Aug;42(8):509–521. doi: 10.1364/josa.42.000509. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES