Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Nov;332:187–202. doi: 10.1113/jphysiol.1982.sp014409

The inhibitory effect of the olivocerebellar input on the cerebellar Purkinje cells in the rat

P G Montarolo 1, M Palestini 1,*, P Strata 1
PMCID: PMC1197394  PMID: 7153927

Abstract

1. In rats under Nembutal anaesthesia the inferior olive region has been reversibly inactivated by applying a cooling probe to the ventral surface of the medulla. Simple and complex spike activity has been recorded from Purkinje cells of the cerebellar cortex.

2. Following cooling of the inferior olive of one side we have observed a remarkable increase of the simple spike activity in all the twenty-two Purkinje cells, showing a disappearance of the complex spike activity.

3. In some rats two Purkinje cells were recorded simultaneously from each side of the cerebellar cortex. Following cooling of the left inferior olive the effect on the Purkinje cell was observed only or predominantly on the contralateral cerebellar cortex.

4. In a group of animals the inferior olive has been destroyed by 3-acetylpyridine 4-221 days before the recording session. Cooling of the inferior olive region was not accompanied by any significant and consistent increase in the spike activity of presumed Purkinje cells of the contralateral cerebellar cortex.

5. These results indicate that the remarkable increase of the simple spike frequency following cooling of the inferior olive region is due specifically to the suppression of the activity of the olivocerebellar neurones.

6. Only a small amount of the simple spike frequency increase is attributable to the removal of the post-climbing fibre pause.

7. In some lesioned rats recording was made from Purkinje cells, which showed complex spikes due to the few surviving inferior olive cells. In these Purkinje cells cooling of the inferior olive region was accompanied by a disappearance of the complex spike and by a small increase of the simple spike frequency of discharge. Such an increase is mainly attributable to the removal of the post-climbing fibre pause.

8. These results suggest that a given Purkinje cell is not only under the inhibitory influence of its own climbing fibre, but also of other olivocerebellar neurones, probably through climbing fibre collaterals to the cerebellar cortical interneurones.

9. It is suggested that one role of the olivocerebellar system is to exert a powerful tonic inhibitory action on the Purkinje cells and consequently to exert a significant control on the excitability of the subcerebellar centres.

Full text

PDF
187

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Armstrong D. M. Functional significance of connections of the inferior olive. Physiol Rev. 1974 Apr;54(2):358–417. doi: 10.1152/physrev.1974.54.2.358. [DOI] [PubMed] [Google Scholar]
  2. Armstrong D. M. The mammalian cerebellum and its contribution to movement control. Int Rev Physiol. 1978;17:239–294. [PubMed] [Google Scholar]
  3. BERLUCCHI G., MAFFEI L., MORUZZI G., STRATA P. EEG AND BEHAVIORAL EFFECTS ELICITED BY COOLING OF MEDULLA AND PONS. Arch Ital Biol. 1964 Jul;102:372–392. [PubMed] [Google Scholar]
  4. Batini C., Corvisier J., Destombes J., Gioanni H., Everett J. The climbing fibers of the cerebellar cortex, their origin and pathways in cat. Exp Brain Res. 1976 Nov 23;26(4):407–422. doi: 10.1007/BF00234222. [DOI] [PubMed] [Google Scholar]
  5. Bell C. C., Grimm R. J. Discharge properties of Purkinje cells recorded on single and double microelectrodes. J Neurophysiol. 1969 Nov;32(6):1044–1055. doi: 10.1152/jn.1969.32.6.1044. [DOI] [PubMed] [Google Scholar]
  6. Bloedel J. R. Cerebellar afferent systems: a review. Prog Neurobiol. 1973;2(1):3–68. doi: 10.1016/0301-0082(73)90006-3. [DOI] [PubMed] [Google Scholar]
  7. Bloedel J. R., Roberts W. J. Action of climbing fibers in cerebellar cortex of the cat. J Neurophysiol. 1971 Jan;34(1):17–31. doi: 10.1152/jn.1971.34.1.17. [DOI] [PubMed] [Google Scholar]
  8. Burg D., Rubia F. J. Inhibition of cerebellar Purkinje cells by climbing fiber input. Pflugers Arch. 1972;337(4):367–372. doi: 10.1007/BF00586652. [DOI] [PubMed] [Google Scholar]
  9. Chan-Palay V., Palay S. L. Tendril and glomerular collaterals of climbing fibers in the granular layer of the rat's cerebellar cortex. Z Anat Entwicklungsgesch. 1971;133(3):247–273. doi: 10.1007/BF00519302. [DOI] [PubMed] [Google Scholar]
  10. Colin F., Manil J., Desclin J. C. The olivocerebellar system. I. Delayed and slow inhibitory effects: an overlooked salient feature of cerebellar climbing fibers. Brain Res. 1980 Apr 7;187(1):3–27. doi: 10.1016/0006-8993(80)90491-6. [DOI] [PubMed] [Google Scholar]
  11. Courville J., Faraco-Cantin F. On the origin of the climbing fibers of the cerebellum. An experimental study in the cat with an autoradiographic tracing method. Neuroscience. 1978;3(9):797–809. doi: 10.1016/0306-4522(78)90032-5. [DOI] [PubMed] [Google Scholar]
  12. Crepel F., Dhanjal S. S., Garthwaite J. Morphological and electrophysiological characteristics of rat cerebellar slices maintained in vitro. J Physiol. 1981 Jul;316:127–138. doi: 10.1113/jphysiol.1981.sp013777. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Desclin J. C. Early terminal degeneration of cerebellar climbing fibers after destruction of the inferior olive in the rat. Synaptic relationships in the molecular layer. Anat Embryol (Berl) 1976 Apr 21;149(1):87–112. doi: 10.1007/BF00315087. [DOI] [PubMed] [Google Scholar]
  14. Eccles J. C., Llinás R., Sasaki K. The excitatory synaptic action of climbing fibres on the Purkinje cells of the cerebellum. J Physiol. 1966 Jan;182(2):268–296. doi: 10.1113/jphysiol.1966.sp007824. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Ekerot C. F., Oscarsson O. Prolonged dendritic depolarizations evoked in Purkinje cells by climbing fibre impulses. Brain Res. 1980 Jun 16;192(1):272–275. doi: 10.1016/0006-8993(80)91028-8. [DOI] [PubMed] [Google Scholar]
  16. Ekerot C. F., Oscarsson O. Prolonged depolarization elicited in Purkinje cell dendrites by climbing fibre impulses in the cat. J Physiol. 1981 Sep;318:207–221. doi: 10.1113/jphysiol.1981.sp013859. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Ferin M., Grigorian R. A., Strata P. Mossy and climbing fibre activation in the cat cerebellum by stimulation of the labyrinth. Exp Brain Res. 1971;12(1):1–17. doi: 10.1007/BF00234413. [DOI] [PubMed] [Google Scholar]
  18. Ferin M., Grigorian R. A., Strata P. Purkinje cell activation by stimulation of the labyrinth. Pflugers Arch. 1970;321(3):253–258. doi: 10.1007/BF00588446. [DOI] [PubMed] [Google Scholar]
  19. GRANIT R., PHILLIPS C. G. Excitatory and inhibitory processes acting upon individual Purkinje cells of the cerebellum in cats. J Physiol. 1956 Sep 27;133(3):520–547. doi: 10.1113/jphysiol.1956.sp005606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ghelarducci B., Ito M., Yagi N. Impulse discharges from flocculus Purkinje cells of alert rabbits during visual stimulation combined with horizontal head rotation. Brain Res. 1975 Apr 4;87(1):66–72. doi: 10.1016/0006-8993(75)90780-5. [DOI] [PubMed] [Google Scholar]
  21. Hámori J., Szentágothai J. Lack of evidence of synaptic contacts by climbing fibre collaterals to basket and stellate cells in developing rat cerebellar cortex. Brain Res. 1980 Mar 31;186(2):454–457. doi: 10.1016/0006-8993(80)90990-7. [DOI] [PubMed] [Google Scholar]
  22. Lamarre Y., Mercier L. A. Neurophysiological studies of harmaline-induced tremor in the cat. Can J Physiol Pharmacol. 1971 Dec;49(12):1049–1058. doi: 10.1139/y71-149. [DOI] [PubMed] [Google Scholar]
  23. Lamarre Y., Weiss M. Harmaline-induced rhythmic acitivity of alpha and gamma motoneurons in the cat. Brain Res. 1973 Dec 7;63:430–434. doi: 10.1016/0006-8993(73)90118-2. [DOI] [PubMed] [Google Scholar]
  24. Lemkey-Johnston N., Larramendi L. M. Types and distribution of synapses upon basket and stellate cells of the mouse cerebellum: an electron microscopic study. J Comp Neurol. 1968 Sep;134(1):73–112. doi: 10.1002/cne.901340106. [DOI] [PubMed] [Google Scholar]
  25. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell dendrites in mammalian cerebellar slices. J Physiol. 1980 Aug;305:197–213. doi: 10.1113/jphysiol.1980.sp013358. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Llinás R., Sugimori M. Electrophysiological properties of in vitro Purkinje cell somata in mammalian cerebellar slices. J Physiol. 1980 Aug;305:171–195. doi: 10.1113/jphysiol.1980.sp013357. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Llinás R., Volkind R. A. The olivo-cerebellar system: functional properties as revealed by harmaline-induced tremor. Exp Brain Res. 1973 Aug 31;18(1):69–87. doi: 10.1007/BF00236557. [DOI] [PubMed] [Google Scholar]
  28. Llinás R., Walton K., Hillman D. E., Sotelo C. Inferior olive: its role in motor learing. Science. 1975 Dec 19;190(4220):1230–1231. doi: 10.1126/science.128123. [DOI] [PubMed] [Google Scholar]
  29. Martinez F. E., Crill W. E., Kennedy T. T. Electrogenesis of cerebellar Purkinje cell responses in cats. J Neurophysiol. 1971 May;34(3):348–356. doi: 10.1152/jn.1971.34.3.348. [DOI] [PubMed] [Google Scholar]
  30. Montarolo P. G., Raschi F., Strata P. On the origin of the climbing fibres of the cerebellar cortex. Pflugers Arch. 1980 Jan;383(2):137–142. doi: 10.1007/BF00581874. [DOI] [PubMed] [Google Scholar]
  31. Murphy J. T., Sabah N. H. Cerebellar Purkinje cell responses to afferent inputs. I. Climbing fiber activation. Brain Res. 1971 Feb 5;25(3):449–467. doi: 10.1016/0006-8993(71)90454-9. [DOI] [PubMed] [Google Scholar]
  32. Rawson J. A., Tilokskulchai K. Suppression of simple spike discharges of cerebellar Purkinje cells by impulses in climbing fibre afferents. Neurosci Lett. 1981 Sep 1;25(2):125–130. doi: 10.1016/0304-3940(81)90319-0. [DOI] [PubMed] [Google Scholar]
  33. SCHEIBEL M. E., SCHEIBEL A. B. Observations on the intracortical relations of the climbing fibers of the cerebellum; a Golgi study. J Comp Neurol. 1954 Dec;101(3):733–763. doi: 10.1002/cne.901010305. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES