Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Nov;332:441–458. doi: 10.1113/jphysiol.1982.sp014423

The action of puromycin and cycloheximide on the initiation of rapid axonal transport in amphibian dorsal root neurones

T R Nichols 1,2,*, R S Smith 1,2, R E Snyder 1,2
PMCID: PMC1197408  PMID: 6185671

Abstract

1. Amphibian dorsal root ganglia—sciatic nerve preparations were incubated in vitro and the rapid axonal transport of radioactive labels was studied with a position-sensitive detector and by conventional liquid scintillation analysis. Protein was labelled by exposure of the ganglia to [35S]methionine or [3H]leucine and lipid was labelled using [32P]orthophosphoric acid.

2. Protein synthesis was interrupted by exposure of the ganglia to either cycloheximide or puromycin. When ganglia were exposed to either inhibitor prior to or simultaneously with a label, the somal export of both protein and lipid to the axon was reduced by two to three orders of magnitude.

3. Using the position-sensitive detector, [35S]methionine was observed to be exported from the ninth dorsal root ganglia of Rana catesbiana 3·49±1·56 h (± S.D.) after exposure, and [32P]phosphate 4·46±1·85 h after exposure.

4. Export of [35S]methionine or [32P]phosphate was disrupted 3·32±1·21 h (± S.D.) or 1·93±1·04 h respectively after exposure of the ganglia to cycloheximide or puromycin.

5. For a given preparation the time required for [35S]methionine to be exported was statistically equal to the time required for cycloheximide or puromycin to disrupt export. No such correlation was found to exist for the export of [32P]phosphate.

6. Analysis revealed that materials labelled with either [35S]methionine or [32P]phosphate continue to be exported from the ganglia for several hours after the initial disruption in outflow caused by the inhibitors.

7. The results do not provide support for the hypothesis of Ambron, Goldman & Schwartz (1975) that a `key' newly synthesized, and non-storable, polypeptide is added to an already assembled structure to allow rapid axonal transport to be initiated.

Full text

PDF
441

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abe T., Haga T., Kurokawa M. Rapid transport of phosphatidylcholine occurring simultaneously with protein transport in the frog sciatic nerve. Biochem J. 1973 Nov;136(3):731–740. doi: 10.1042/bj1360731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Ambron R. T., Goldman J. E., Schwartz J. H. Effect of inhibiting protein synthesis on axonal transport of membrane glycoproteins in an identified neuron of Aplysia. Brain Res. 1975 Aug 29;94(2):307–323. doi: 10.1016/0006-8993(75)90064-5. [DOI] [PubMed] [Google Scholar]
  3. Ambron R. T., Goldman J. E., Shkolnik L. J., Schwartz J. H. Synthesis and axonal transport of membrane glycoproteins in an identified serotonergic neuron of Aplysia. J Neurophysiol. 1980 Apr;43(4):929–944. doi: 10.1152/jn.1980.43.4.929. [DOI] [PubMed] [Google Scholar]
  4. Currie J. R., Grafstein B., Whitnall M. H., Alpert R. Axonal transport of lipid in goldfish optic axons. Neurochem Res. 1978 Aug;3(4):479–492. doi: 10.1007/BF00966329. [DOI] [PubMed] [Google Scholar]
  5. Edstrom A., Mattsson H. Fast axonal transport in vitro in the sciatic system of the frog. J Neurochem. 1972 Jan;19(1):205–221. doi: 10.1111/j.1471-4159.1972.tb01270.x. [DOI] [PubMed] [Google Scholar]
  6. Edström A., Hanson M. Temperature effects on fast axonal transport of proteins in vitro in frog sciatic nerves. Brain Res. 1973 Aug 30;58(2):345–354. doi: 10.1016/0006-8993(73)90006-1. [DOI] [PubMed] [Google Scholar]
  7. Edström A., Mattsson H. Rapid axonal transport in vitro in the sciatic system of the frog of fucose-, glucosamine- and sulphate-containing material. J Neurochem. 1972 Jul;19(7):1717–1729. doi: 10.1111/j.1471-4159.1972.tb06216.x. [DOI] [PubMed] [Google Scholar]
  8. Forman D. S., Grafstein B., McEwen B. S. Rapid axonal transport of ( 3 H)fucosyl glycoproteins in the goldfish optic system. Brain Res. 1972 Dec 24;48:327–342. doi: 10.1016/0006-8993(72)90187-4. [DOI] [PubMed] [Google Scholar]
  9. Glazer R. I., Sartorelli A. C. The differential sensitivity of free and membrane-bound polyribosomes to inhibitors of protein synthesis. Biochem Biophys Res Commun. 1972 Feb 16;46(3):1418–1424. doi: 10.1016/s0006-291x(72)80134-7. [DOI] [PubMed] [Google Scholar]
  10. Grafstein B., Forman D. S. Intracellular transport in neurons. Physiol Rev. 1980 Oct;60(4):1167–1283. doi: 10.1152/physrev.1980.60.4.1167. [DOI] [PubMed] [Google Scholar]
  11. Grafstein B., Miller J. A., Ledeen R. W., Haley J., Specht S. C. Axonal transport of phospholipid in goldfish optic system. Exp Neurol. 1975 Feb;46(2):261–281. doi: 10.1016/0014-4886(75)90134-x. [DOI] [PubMed] [Google Scholar]
  12. Gross G. W., Beidler L. M. A quantitative analysis of isotope concentration profiles and rapid transport velocities in the C-fibers of the garfish olfactory nerve. J Neurobiol. 1975 Mar;6(2):213–232. doi: 10.1002/neu.480060208. [DOI] [PubMed] [Google Scholar]
  13. Hammerschlag R., Lavoie P. A. Initiation of fast axonal transport: involvement of calcium during transfer of proteins from Golgi apparatus to the transport system. Neuroscience. 1979;4(8):1195–1201. doi: 10.1016/0306-4522(79)90202-1. [DOI] [PubMed] [Google Scholar]
  14. Hammond G. R., Smith R. S. Inhibition of the rapid movement of optically detectable axonal particles colchicine and vinblastine. Brain Res. 1977 Jun 10;128(2):227–242. doi: 10.1016/0006-8993(77)90990-8. [DOI] [PubMed] [Google Scholar]
  15. Hines J. F., Garwood M. M. Release of protein from axons during rapid axonal transport: an in vitro preparation. Brain Res. 1977 Apr 8;125(1):141–148. doi: 10.1016/0006-8993(77)90365-1. [DOI] [PubMed] [Google Scholar]
  16. Longo F. M., Hammerschlag R. Relation of somal lipid synthesis to the fast axonal transport of protein and lipid. Brain Res. 1980 Jul 14;193(2):471–485. doi: 10.1016/0006-8993(80)90178-x. [DOI] [PubMed] [Google Scholar]
  17. McEwen B. S., Grafstein B. Fast and slow components in axonal transport of protein. J Cell Biol. 1968 Sep;38(3):494–508. doi: 10.1083/jcb.38.3.494. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Neale J. H., Barker J. L. Bidirectional axonal transport of 45Ca2+: studies in isolated frog sensory, motor and sympathetic neurons, Aplysia cerebral ganglion and the goldfish visual system. Brain Res. 1977 Jun 24;129(1):45–59. doi: 10.1016/0006-8993(77)90969-6. [DOI] [PubMed] [Google Scholar]
  19. Ochs S. Retention and redistribution of proteins in mammalian nerve fibres by axoplasmic transport. J Physiol. 1975 Dec;253(2):459–475. doi: 10.1113/jphysiol.1975.sp011200. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Ochs S., Sabri M. I., Ranish N. Somal site of synthesis of fast transported materials in mammalian nerve fibers. J Neurobiol. 1969;1(3):329–344. doi: 10.1002/neu.480010308. [DOI] [PubMed] [Google Scholar]
  21. Schwartz J. H. Axonal transport: components, mechanisms, and specificity. Annu Rev Neurosci. 1979;2:467–504. doi: 10.1146/annurev.ne.02.030179.002343. [DOI] [PubMed] [Google Scholar]
  22. Sherbany A. A., Ambron R. T., Schwartz J. H. Membrane glycolipids: regional synthesis and axonal transport in a single identified neuron of Aplysia californica. Science. 1979 Jan 5;203(4375):78–80. doi: 10.1126/science.83001. [DOI] [PubMed] [Google Scholar]
  23. Snyder R. E., Nichols T. R., Smith R. S. Rapid orthograde transport of 32P-labelled material in amphibian sensory axons: a multiwire proportional chamber study. Can J Physiol Pharmacol. 1980 May;58(5):513–524. doi: 10.1139/y80-085. [DOI] [PubMed] [Google Scholar]
  24. Snyder R. E., Reynolds R. A., Smith R. S., Kendal W. S. Application of a multiwire proportional chamber to the detection of axoplasmic transport. Can J Physiol Pharmacol. 1976 Jun;54(3):238–244. doi: 10.1139/y76-036. [DOI] [PubMed] [Google Scholar]
  25. Snyder R. E., Smith R. S. A multiwire proportional chamber study of axoplasmic transport in frog sciatic nerve involving interruption of somatic supply. Brain Res. 1979 Feb 2;161(2):237–251. doi: 10.1016/0006-8993(79)90066-0. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES