Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Nov;332:487–499. doi: 10.1113/jphysiol.1982.sp014426

GABA-mediated changes in excitability of the rat lateral olfactory tract in vitro.

C R Cain, M A Simmonds
PMCID: PMC1197411  PMID: 7153936

Abstract

1. Conditioning stimulation of the lateral olfactory tract (l.o.t.) in the rat olfactory cortex slice evoked a slow depolarization of the terminal regions of the l.o.t. The depolarization lasted about 150 ms and was abolished by the gamma-aminobutyric acid (GABA) antagonist bicuculline. 2. Excitability testing of the terminal regions of the l.o.t. showed an increase in excitability which lasted for about 150 ms following a conditioning stimulus. This increase in excitability was abolished by the calcium antagonist cadmium and by the GABA antagonists bicuculline and penicillin. 3. Superfused GABA caused a consistent decrease in the excitability of the terminal regions of the l.o.t. within the cortex but an increase in excitability of the axons within the tract itself. These effects were antagonized by bicuculline. K+ caused similar changes in excitability which were not antagonized by bicuculline. 4. The difference between the effects of superfused GABA and the effects of orthodromic conditioning can be explained if a more restricted location of action is assumed for the GABA released by conditioning stimulation. It is suggested that GABA causes a decrease in excitability at its locus of action and that the observed increases in excitability occur in adjacent areas of neuronal membrane.

Full text

PDF
487

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ault B., Evans R. H. The depressant action of baclofen on the isolated spinal cord of the neonatal rat. Eur J Pharmacol. 1981 May 22;71(4):357–364. doi: 10.1016/0014-2999(81)90179-5. [DOI] [PubMed] [Google Scholar]
  2. Banna N. R., Jabbur S. J. Pharmacological studies on inhibition in the cuneate nucleus of the cat. Int J Neuropharmacol. 1969 May;8(3):299–307. doi: 10.1016/0028-3908(69)90051-3. [DOI] [PubMed] [Google Scholar]
  3. Brown D. A., Adams P. R., Higgins A. J., Marsh S. Distribution of gaba-receptors and gaba-carriers in the mammalian nervous system. J Physiol (Paris) 1979;75(6):667–671. [PubMed] [Google Scholar]
  4. Bryan J. S., Krasne F. B. Presynaptic inhibition: the mechanism of protection from habituation of the crayfish lateral giant fibre escape response. J Physiol. 1977 Oct;271(2):369–390. doi: 10.1113/jphysiol.1977.sp012005. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cain C. R., Simmonds M. A. Effects of baclofen on the olfactory cortex slice preparation. Neuropharmacology. 1982 Apr;21(4):371–373. doi: 10.1016/0028-3908(82)90103-4. [DOI] [PubMed] [Google Scholar]
  6. Collins G. G. Evidence of a neurotransmitter role for aspartate and gamma-aminobutyric acid in the rat olfactory cortex. J Physiol. 1979 Jun;291:51–60. doi: 10.1113/jphysiol.1979.sp012799. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Courtice C. J. A circuit for recording evoked action potential amplitudes [proceedings]. J Physiol. 1977 Jun;268(1):1P–2P. [PMC free article] [PubMed] [Google Scholar]
  8. Davidson N., Southwick C. A. Amino acids and presynaptic inhibition in the rat cuneate nucleus. J Physiol. 1971 Dec;219(3):689–708. doi: 10.1113/jphysiol.1971.sp009683. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Deschenes M., Feltz P. GABA-induced rise of extracellular potassium in rat dorsal root ganglia: an electrophysiological study in vivo. Brain Res. 1976 Dec 24;118(3):494–499. doi: 10.1016/0006-8993(76)90319-x. [DOI] [PubMed] [Google Scholar]
  10. Dunlap K. Two types of gamma-aminobutyric acid receptor on embryonic sensory neurones. Br J Pharmacol. 1981 Nov;74(3):579–585. doi: 10.1111/j.1476-5381.1981.tb10467.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Evans R. H. The effects of amino acids and antagonists on the isolated hemisected spinal cord of the immature rat. Br J Pharmacol. 1978 Feb;62(2):171–176. doi: 10.1111/j.1476-5381.1978.tb08442.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. GRAY E. G. A morphological basis for pre-synaptic inhibition? Nature. 1962 Jan 6;193:82–83. doi: 10.1038/193082a0. [DOI] [PubMed] [Google Scholar]
  13. Gallagher J. P., Higashi H., Nishi S. Characterization and ionic basis of GABA-induced depolarizations recorded in vitro from cat primary afferent neurones. J Physiol. 1978 Feb;275:263–282. doi: 10.1113/jphysiol.1978.sp012189. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Grossman Y., Parnas I., Spira M. E. Mechanisms involved in differential conduction of potentials at high frequency in a branching axon. J Physiol. 1979 Oct;295:307–322. doi: 10.1113/jphysiol.1979.sp012970. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Hayes A. G., Simmonds M. A. Effects of gamma-aminobutyric acid on nerve terminal excitability in a slice preparation of cuneate nucleus. Br J Pharmacol. 1978 Jul;63(3):503–507. doi: 10.1111/j.1476-5381.1978.tb07804.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Hill D. R., Bowery N. G. 3H-baclofen and 3H-GABA bind to bicuculline-insensitive GABA B sites in rat brain. Nature. 1981 Mar 12;290(5802):149–152. doi: 10.1038/290149a0. [DOI] [PubMed] [Google Scholar]
  17. Kostyuk P. G., Krishtal O. A., Shakhovalov Y. A. Separation of sodium and calcium currents in the somatic membrane of mollusc neurones. J Physiol. 1977 Sep;270(3):545–568. doi: 10.1113/jphysiol.1977.sp011968. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levy R. A., Repkin A. H., Anderson E. G. The effect of bicuculline on primary afferent terminal excitability. Brain Res. 1971 Sep 10;32(1):261–265. doi: 10.1016/0006-8993(71)90178-8. [DOI] [PubMed] [Google Scholar]
  19. Levy R. A. The role of GABA in primary afferent depolarization. Prog Neurobiol. 1977;9(4):211–267. doi: 10.1016/0301-0082(77)90002-8. [DOI] [PubMed] [Google Scholar]
  20. Nicoll R. A., Alger B. E. Presynaptic inhibition: transmitter and ionic mechanisms. Int Rev Neurobiol. 1979;21:217–258. doi: 10.1016/s0074-7742(08)60639-x. [DOI] [PubMed] [Google Scholar]
  21. Pickles H. G. Presynaptic gamma-aminobutyric acid responses in the olfactory cortex. Br J Pharmacol. 1979 Feb;65(2):223–228. doi: 10.1111/j.1476-5381.1979.tb07822.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Pickles H. G., Simmonds M. A. Antagonism by penicillin of gamma-aminobutyric acid depolarizations at presynaptic sites in rat olfactory cortex and cuneate nucleus in vitro. Neuropharmacology. 1980 Jan;19(1):35–38. doi: 10.1016/0028-3908(80)90163-x. [DOI] [PubMed] [Google Scholar]
  23. Pickles H. G., Simmonds M. A. Field potentials, inhibition and the effect of pentobarbitone in the rat olfactory cortex slice. J Physiol. 1978 Feb;275:135–148. doi: 10.1113/jphysiol.1978.sp012181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Pickles H. G., Simmonds M. A. Possible presynaptic inhibition in rat olfactory cortex. J Physiol. 1976 Sep;260(2):475–486. doi: 10.1113/jphysiol.1976.sp011526. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Price J. L., Sprich W. W. Observations on the lateral olfactory tract of the rat. J Comp Neurol. 1975 Aug 1;162(3):321–336. doi: 10.1002/cne.901620304. [DOI] [PubMed] [Google Scholar]
  26. Richards C. D., Sercombe R. Electrical activity observed in guinea-pig olfactory cortex maintained in vitro. J Physiol. 1968 Aug;197(3):667–683. doi: 10.1113/jphysiol.1968.sp008581. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Scholfield C. N. A barbiturate induced intensification of the inhibitory potential in slices of guinea-pig olfactory cortex. J Physiol. 1978 Feb;275:559–566. doi: 10.1113/jphysiol.1978.sp012208. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Simmonds M. A. Evidence that bicuculline and picrotoxin act at separate sites to antagonize gamma-aminobutyric acid in rat cuneate nucleus. Neuropharmacology. 1980 Jan;19(1):39–45. doi: 10.1016/0028-3908(80)90164-1. [DOI] [PubMed] [Google Scholar]
  29. Simmonds M. A. Presynaptic actions of gamma-aminobutyric acid and some antagonists in a slice preparation of cuneate nucleus. Br J Pharmacol. 1978 Jul;63(3):495–502. doi: 10.1111/j.1476-5381.1978.tb07803.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. Singer W., Lux H. D. Presynaptic depolarization and extracellular potassium in the cat lateral geniculate nucleus. Brain Res. 1973 Dec 21;64:17–33. doi: 10.1016/0006-8993(73)90168-6. [DOI] [PubMed] [Google Scholar]
  31. Székely G., Kosaras B. Electron microscopic identification of postsynaptic dorsal root terminals: a possible substrate of dorsal root potentials in the frog spinal cord. Exp Brain Res. 1977 Sep 28;29(3-4):531–539. doi: 10.1007/BF00236190. [DOI] [PubMed] [Google Scholar]
  32. WALL P. D. Excitability changes in afferent fibre terminations and their relation to slow potentials. J Physiol. 1958 Jun 18;142(1):1–21. doi: 10.1113/jphysiol.1958.sp005997. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. Walberg F. Axoaxonic contacts in the cuneate nucleus, probable basis for presynaptic depolarization. Exp Neurol. 1965 Oct;13(2):218–231. doi: 10.1016/0014-4886(65)90111-1. [DOI] [PubMed] [Google Scholar]
  34. Westrum L. E. Electron microscopy of degeneration in the lateral olfactory tract and plexiform layer of the prepyriform cortex of the rat. Z Zellforsch Mikrosk Anat. 1969;98(2):157–187. doi: 10.1007/BF00338323. [DOI] [PubMed] [Google Scholar]
  35. Yamamoto C., McIlwain H. Electrical activities in thin sections from the mammalian brain maintained in chemically-defined media in vitro. J Neurochem. 1966 Dec;13(12):1333–1343. doi: 10.1111/j.1471-4159.1966.tb04296.x. [DOI] [PubMed] [Google Scholar]
  36. Zingg H. H., Baertschi A. J., Dreifuss J. J. Action of gamma-aminobutyric acid on hypothalamo-neurohypophysial axons. Brain Res. 1979 Aug 10;171(3):453–459. doi: 10.1016/0006-8993(79)91049-7. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES