Skip to main content
Acta Crystallographica Section E: Crystallographic Communications logoLink to Acta Crystallographica Section E: Crystallographic Communications
. 2025 Mar 11;81(Pt 4):303–309. doi: 10.1107/S2056989025002063

Synthesis and structure of tris­(2-methyl-1H-imidazol-3-ium) 5-carb­oxy­benzene-1,3-di­carboxyl­ate 3,5-di­carb­oxy­benzoate

Lina Maria Asprilla-Herrera a, Simone Techert b,c, Jose de Jesus Velazquez-Garcia c,*
Editor: V Jancikd
PMCID: PMC11974331  PMID: 40201002

The structure of a tris­(2-methyl-1H-imidazol-3-ium) di­hydrogenetrimesate mono­hydrogentrimesate2− compound was determined by single-crystal X-ray diffraction. The compound is mixture of protonated and deprotonated mol­ecules.

Keywords: crystal structure, 2-methyl­imidazole, trimesic acid

Abstract

The structure of the title salt, 3C4H7N2+·C9H5O6·C9H4O62−, 1, consists of three 2-methyl-imidazolium cations and both a single and a doubly deprotonated form of trimesic acid as anions. A detailed analysis of the bond lengths and angles reveals both differences and similarities between compound 1 and the previously reported 2-methyl-1H-imidazol-3-ium 3,5-di­carb­oxy­benzoate structure [Baletska et al. (2023). Acta Cryst. E79, 1088–109], as well as the neutral counterpart of the ions. Examination of the crystal packing shows the formation of infinite chains by the anions, which, along with the cations, form zigzag planes parallel to the ab plane. The packing inter­actions are primarily driven by π–π inter­actions and hydrogen bonding between anions.

1. Chemical context

Trimesic acid (H3btc, or benzene-1,2,3-tri­carb­oxy­lic acid) and 2-meth­ylimidazole (2-mIm) are two well-known organic compounds with a wide range of applications. Trimesic acid, a planar and highly symmetrical trifunctional compound, has been used for self-assembled mol­ecular monolayers and surface functionalization (Ha et al., 2010; Lin et al., 2023; Chen et al., 2014; Korolkov et al., 2012; MacLeod, 2019; Iancu et al., 2013). Additionally, H3btc, along with dendrimers based on it, has been employed in biomolecular delivery systems (Salamończyk, 2011; Mat Yusuf et al., 2017; Emani et al., 2023). On the other hand, 2-mIm, a nitro­gen-containing heterocyclic organic compound, is widely used in the preparation of pharmaceuticals, photographic and photothermographic chemicals, dyes and pigments, agricultural chemicals, and in rubber production (Hachuła et al., 2010; Chan, 2004). Both H3btc and 2-mIm are also well-known ligands in the syntheses of metal–organic frameworks (MOFs), such as HKUST-1 (Chui et al., 1999), MIL-100 (Férey et al., 2004), ZIF-8 (Park et al., 2006), and ZIF-67 (Banerjee et al., 2008), which have applications in gas adsorption, catalysis, and drug delivery, among others (Zhong et al., 2018a,b; Zhao et al., 2024; Huang et al., 2011; Song et al., 2024; Abdelhamid, 2021; Sun et al., 2012).

In our previous studies, we synthesised hexa­aqua­cobalt bis­(2-methyl-1H-imidazol-3-ium) tetra­aqua­bis­(benzene-1,3,5-tri­carboxyl­ato-κO)cobalt (Velazquez-Garcia & Techert, 2022) and 2-methyl-1H-imidazol-3-ium 3,5-di­carb­oxy­benzoate (Baletska et al., 2023) using 2-mIm and H3btc as organic compounds. In this work, we used the same organic compounds to synthesise the title compound, 1.1.

2. Structural commentary

Compound 1 crystallizes with one H2btc, one Hbtc2−, and three H2-mIm+ ions in the asymmetric unit, space group P21/n. An ellipsoid plot illustrating these ionic species is shown in Fig. 1. For clarity, the three crystallographically independent cations are labelled as A, B, and C to facilitate their identification.

Figure 1.

Figure 1

Single-crystal X-ray structure of 1 with displacement ellipsoids drawn at the 50% probability level.

Table 1 presents selected bond distances and angles of the H2btc ion, while Table 2 shows those for the Hbtc2− ion. The shortest bond in the H2btc ion is between C21 and O1 at 1.214 (2) Å, while the longest is between C9 and C20 at 1.519 (2) Å. In the Hbtc2− ion, the shortest bond is C18—O9 at 1.214 (2) Å, and the longest is C6—C17 at 1.510 (2) Å.

Table 1. Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2btc anion in 1.

C10—C11 1.392 (2) C7—C12 1.391 (2) C8—C9 1.389 (2)
C11—C12 1.393 (2) C7—C8 1.394 (2) C9—C10 1.394 (2)
C11—C21 1.499 (2) C7—C22 1.492 (2) C9—C20 1.519 (2)
O1—C21 1.214 (2) O3—C20 1.247 (2) O5—C22 1.218 (2)
O2—C21 1.303 (2) O4—C20 1.258 (2) O6—C22 1.318 (2)
C10—C11—C12 119.68 (15) C7—C12—C11 119.86 (16) O1—C21—O2 124.30 (16)
C9—C8—C7 120.68 (15) C12—C7—C8 119.93 (15) O3—C20—O4 126.76 (17)
C8—C9—C10 118.98 (16) C11—C10—C9 120.84 (15) O5—C22—O6 124.31 (15)
C10—C11—C21—O1 −4.4 (2) C10—C9—C20—O4 −173.05 (15) C10—C11—C12—-C7 2.3 (2)
C12—C11—C21—O1 174.23 (16) C8—C9—C20—O4 5.4 (2) C12—C7—C8—C9 0.0 (2)
C10—C11—C21—O2 176.85 (15) C12—C7—C22—O5 −177.56 (16) C7—C8—C9—C10 1.5 (2)
C12—C11—C21—O2 −4.5 (2) C8—C7—C22—O5 1.9 (2) C8—C9—C10—C11 −1.2 (2)
C10—C9—C20—O3 6.0 (2) C12—C7—C22—O6 1.2 (2) C8—C7—C12—C11 −1.9 (2)
C8—C9—C20—O3 −175.60 (15) C8—C7—C22—O6 −179.37 (15) C9—C10—C11—C12 −0.7 (2)

Table 2. Selected bond lengths (Å), angles (°) and torsion angles (°) of the Hbtc2− anion in 1.

C1—C6 1.393 (2) C2—C3 1.39 (2) C4—C5 1.392 (2)
C1—C2 1.398 (2) C3—C4 1.391 (2) C5—C6 1.388 (2)
C2—C19 1.504 (2) C4—C18 1.486 (2) C6—C17 1.510 (2)
O7—C17 1.255 (2) O9—C18 1.214 (2) O11—C19 1.2555 (19)
O8—C17 1.2650 (19) O10—C18 1.338 (2) O12—C19 1.263 (2)
C2—C3—C4 119.79 (15) C6—C1—C2 120.38 (16) O7—C17—O8 125.41 (15)
C6—C5—C4 120.39 (15) C3—C2—C1 119.79 (14) O9—C18—O10 123.24 (16)
C3—C4—C5 120.21 (16) C5—C6—C1 119.38 (15) O11—C19—O12 124.16 (15)
C1—C6—C17—O7 15.5 (2) C3—C4—C18—O10 17.1 (2) C1—C2—C3—C4 2.5 (2)
C5—C6—C17—O7 167.31 (14) C5—C4—C18—O10 164.63 (14) C2—C3—C4—C5 −0.5 (2)
C1—C6—C17—O8 163.84 (15) C1—C2—C19—O11 −163.18 (15) C2—C1—C6—C5 −0.4 (2)
C5—C6—C17—O8 −13.4 (2) C3—C2—C19—O11 13.5 (2) C3—C4—C5—C6 −1.5 (2)
C3—C4—C18—O9 −163.64 (16) C1—C2—C19—O12 15.8 (2) C4—C5—C6—C1 1.6 (2)
C5—C4—C18—O9 14.6 (2) C3—C2—C19—O12 −167.44 (15) C6—C1—C2—C3 −2.4 (2)

The C—C and C—O bond lengths in the H2btc ion range from 1.389 (2) to 1.519 (2) Å and 1.214 (2) to 1.318 (2) Å, respectively. For the Hbtc2− ion, the C—C bond lengths span 1.388 (2) to 1.510 (2) Å, while the C—O bonds range from 1.214 (2) to 1.338 (2) Å. These values are comparable to those in the neutral H3btc mol­ecule (Tothadi et al., 2020), where the C—C bond lengths range from 1.381 (6) to 1.494 (9) Å, and C—O bonds range from 1.229 (5) to 1.303 (5) Å. They are also consistent with the bond lengths observed in the H2btc anion reported in our previous work (Baletska et al., 2023), and featuring ranges of 1.388 (2)–1.511 (2) Å for C—C bonds and 1.224 (2)–1.320 (2) Å for C—O bonds.

The C—C—C angles in H2btc in 1 range from 118.9 (2) to 120.8 (2)°, while in the Hbtc2− ion, they fall between 119.4 (2) and 120.4 (2)°. These values are comparable to the corresponding angles in H3btc [119.0 (4)–121.1 (4)°] and H2btc reported by Baletska et al. (2023) [118.9 (2)–121.4 (4)°]. The O—C—O angles in the H2btc ion in complex 1 span 124.3 (2) to 126.8 (2)°, and in the Hbtc2− ion, they range from 123.2 (2) to 125.4 (2)°. These values are also consistent with those found in neutral H3btc [124.4 (4)–125.0 (4)°] and in H2btc from [123.9 (2)–126.1 (2)°; Baletska et al., 2023].

The main difference between the anions in 1, the neutral H3btc mol­ecule, and the H2btc ion (Baletska et al., 2023) lies in their torsion angles. In the H3btc mol­ecule, the oxygen atoms are nearly coplanar with the aromatic ring, with torsion angles deviating from 0 or 180° by no more than 4.2 (4)°. H2btc (Baletska et al., 2023) shows a wider deviation range, from 4.2 (2) to 16.6 (2)°. In comparison, the H2btc ion in 1 exhibits inter­mediate values, ranging from 0.6 (2) to 7.0 (2)°, whereas the Hbtc2− ion shows the largest torsion angles, ranging from 12.6 (2) to 17.1 (2)°.

These differences are further emphasised through mol­ecular overlays generated using Mercury software (Macrae et al., 2020). The overlays (Fig. 2) show that the H2btc ion in 1 resembles the neutral H3btc more closely (root-mean-square deviation, r.m.s.d. = 0.0683 Å; maximal deviation, max. d. = 0.1257 Å) than the H2btc ion) (r.m.s.d. = 0.1039 Å; max. d. = 0.2189 Å; Baletska et al., 2023). On the other hand, the Hbtc2− ion in 1 shows a lower resemblance to H3btc (r.m.s.d. = 0.1856 Å; max. d. = 0.3985 Å) compared to the H2btc ion (r.m.s.d. = 0.09 Å; max. d. = 0.2344 Å; Baletska et al., 2023). Note that hydrogen atoms were excluded from the model during the overlay process.

Figure 2.

Figure 2

Overlay plot comparing the H2btc (dark blue) and Hbtc2− (light blue) ions in 1 with (a) H3btc (red; Tothadi et al. 2020) and (b) H2btc (green; Baletska et al., 2023). Hydrogen atoms are omitted for clarity.

Table 3 presents selected bond lengths, angles, and torsions for the H2-mIm+ cations. The C—C bond distances fall in the range 1.339 (3)–1.483 (3) Å, while the C—N bonds vary from 1.323 (2) to 1.383 (2) Å. These values are comparable to the corresponding distances observed in the neutral 2-mIm+ mol­ecule reported by Hachuła et al. (2010) [C—C = 1.367 (1)–1.488 (1) Å, C—N = 1.329 (1)–1.385 (1) Å] and in the H2-mIm+ ion reported by Baletska et al. (2023) [C—C = 1.345 (3)–1.481 (3) Å, C—N = 1.327 (2)–1.377 (2) Å].

Table 3. Selected bond lengths (Å), angles (°) and torsion angles (°) of the H2-mIm+ cations in 1.

A   B   C  
C13—C16 1.483 (3) C23—C24 1.482 (3) C27—C30 1.482 (3)
C14—C15 1.348 (2) C25—C26 1.339 (3) C28—C29 1.346 (3)
N1—C13 1.326 (2) N3—C24 1.332 (2) N5—C30 1.330 (2)
N1—C14 1.370 (2) N3—C25 1.383 (2) N5—C28 1.380 (2)
N2—C13 1.330 (2) N4—C24 1.323 (2) N6—C30 1.335 (2)
N2—C15 1.371 (2) N4—C26 1.380 (2) N6—C29 1.380 (2)
C13—N2—C15 109.13 (14) C28—C29—N6 106.06 (17) C24—N4—C26 108.48 (16)
C13—N1—C14 109.87 (15) C29—C28—N5 107.12 (17) C24—N3—C25 109.08 (15)
C14—C15—N2 107.24 (16) C30—N5—C28 109.18 (16) C25—C26—N4 107.85 (16)
C15—C14—N1 106.39 (15) C30—N6—C29 108.92 (16) C26—C25—N3 106.35 (17)
N1—C13—N2 107.36 (16) N4—C24—N3 108.31 (16) N5—C30—N6 107.91 (16)
N1—C14—C15—N2 0.1 (2) N3—C25—C26—N4 0.0 (2) N5—C28—C29—N6 −0.5 (2)
C13—N1—C14—C15 0.4 (2) C24—N3—C25—C26 0.4 (2) C30—N5—C28—C29 0.5 (2)
C14—N1—C13—N2 −0.8 (2) C25—N3—C24—N4 0.7 (2) C28—N5—C30—N6 −0.2 (2)
C13—N2—C15—C14 −0.5 (2) C24—N4—C26—C25 −0.5 (2) C30—N6—C29—C28 0.4 (2)
C15—N2—C13—N1 0.8 (2) C26—N4—C24—N3 0.7 (2) C29—N6—C30—N5 0.0 (2)
C14—N1—C13—C16 177.8 (2) C26—N4—C24—C23 179.13 (18) C28—N5—C30—C27 −179.94 (17)
C15—N2—C13—C16 −177.7 (2) C25—N3—C24—C23 179.12 (18) C29—N6—C30—C27 179.67 (18)

Imidazole derivatives often exhibit an asymmetry in the two endocyclic N—C bonds (Hachuła et al., 2010). However, this asymmetry is minimal in all three cations of 1, with differences between the two N—C bond lengths of 0.001 (3), 0.003 (3), and 0.0 (3) Å for cations A, B, and C, respectively. These values are comparable with the asymmetry found in the H2-mIm+ ion [0.008 (3) Å; Baletska et al., 2023] and are significantly smaller than that reported for the neutral mol­ecule [0.022 (1) Å]. This increased symmetry supports the idea that protonation of the imidazole reduces the disparity between the two endocyclic N—C bonds.

Protonation to an H2-mIm+ ion also leads to a more symmetrical heterocyclic ring. In the H2-mIm+ ion (Baletska et al., 2023), this increased symmetry is observed in the C—C—N and N—C—N angles of the heterocyclic ring, which closely approach the ideal penta­gon angle of 108°, with a maximum deviation of 1.6 (2)°. In contrast, the neutral 2-mIm mol­ecule shows a larger deviation of 3.4 (1)°. In compound 1, the maximum deviations from the ideal angles of a penta­gon are 1.9 (2), 1.9 (2), and 1.7 (2)° for cations A, B, and C, respectively. These values confirm that the protonated imidazole exhibits a more symmetrical ring structure than its neutral counterpart.

An analysis of the torsion angles in all cations in compound 1 reveals that the methyl group in cation A is less coplanar to the ring than in other cations. This is evident from the maximum deviation from 180° of the C—N—C—CMe torsion angles (where CMe represents the carbon from the methyl group). Cation A shows a deviation of 2.3 (2)°, while cations B and C exhibit smaller deviations of 0.9 (2) and 0.3 (2)°, respectively. The deviation in cation A is also larger than that observed in the neutral mol­ecule [0.7 (1)°] and the H2-mIm+ ion [0.5 (2)°; Baletska et al., 2023]. The root-mean-squared deviation (r. m. s. d.) and maximal deviation (max. d.) values, calculated by Mercury software for the mol­ecular overlays of the three H2-mIm+ cations in 1 with the H2-mIm+ cation (Baletska et al., 2023) and the neutral mol­ecule (Fig. 3), show a greater similarity between the protonated forms compared to the neutral mol­ecule. The r. m. s. d. and max. d. values for the cations of 1 and the protonated H2-mIm+ (Baletska et al., 2023) range from 0.0067 to 0.0140 Å and 0.0092 to 0.0201 Å, respectively, indicating a close resemblance. On the other hand, the values for the neutral mol­ecule are notably higher, ranging from 0.0269 to 0.0297 Å (r.m.s.d.) and 0.0402 to 0.0474 Å (max. d.). In all cases, hydrogen atoms were omitted from the model during the overlay process.

Figure 3.

Figure 3

Overlay plot comparing the three H2-mIm+ ions (dark blue - A, B and C) in 1 with (a) 2-mIm (pink; Hachułaet al., 2010) and (b) H2-mIm+ ion (green; Baletska et al.,, 2023). Hydrogen atoms are omitted for clarity.

3. Supra­molecular features

The primary inter­molecular inter­action contributing to the crystal packing includes hydrogen bonds between all ions, along with π–π stacking between anions. Table 4 provides a summary of the hydrogen bonds found within the compound. As shown in Fig. 4a, infinite chains are formed along the a axis through hydrogen bonding between H2btc and Hbtc2− anions. These chains are further linked, via hydrogen bonding, with all of the cations, forming zigzag planes parallel to the ab plane (Fig. 4b,c). Each plane inter­acts with two types of neighbouring planes: one with a parallel zigzag pattern, inter­acting via π–π stacking between H2btc and Hbtc2− ions [centroid-to-centroid distance of 3.5663 (12) Å, perpendicular distance between planes ∼3.3 Å and offset of 1.249 Å], and another arranged in an anti­parallel configuration, with the zigzag pattern running in the opposite direction. This anti­parallel plane inter­acts via hydrogen bonding between Hbtc2− ions (Fig. 5). Note that the spaces observed in the planes in Fig. 4b are filled by counter-ions from the adjacent planes with a parallel zigzag pattern, ensuring no voids within compound 1.

Table 4. Hydrogen-bond geometry (Å, °).

  Graph-set descriptor type D—H H⋯A DA D—H⋯A
N1—H1A⋯O8V D(2) d 0.86 (2) 1.911 (18) 2.737 (2) 160.8 (7)
O2—H2⋯O7i D(2) a 0.96 (3) 1.57 (2) 2.5222 (19) 170.7 (17)
N2—H2A⋯O11iv D(2) e 0.88 (3) 1.93 (2) 2.806 (2) 172.5 (13)
N3—H3A⋯O11 D(2) f 0.935 (19) 1.874 (19) 2.778 (2) 162.1 (18)
N4—H4⋯O4vi D(2) g 1.01 (2) 1.59 (2) 2.593 (2) 172.6 (9)
N5—H5A⋯O3vii D(2) h 1.01 (2) 1.69 (2) 2.655 (2) 159.9 (5)
O6—H6⋯O12ii D(2) b 0.93 (3) 1.69 (2) 2.6189 (19) 171.7 (16)
N6—H6A⋯O8 D(2) i 0.921 (17) 1.886 (19) 2.800 (2) 170.9 (13)
O10—H10A⋯O12iii C(8) c 0.93 (3) 1.71 (3) 2.6156 (18) 162 (2)
             
C14—H14⋯O1v     0.95 2.52 3.098 (2) 119
C15—H15⋯O10     0.95 2.46 3.280 (2) 144
C15—H15⋯O5iv     0.95 2.38 3.038 (2) 126
C25—H25⋯O5     0.95 2.55 3.292 (2) 135
C27—H27B⋯O9     0.98 2.41 3.380 (3) 168
C28—H28⋯O9vii     0.95 2.39 2.990 (2) 121
C29—H29⋯O1     0.95 2.33 3.108 (2) 138

(i) 1 − x, 1 − y, 1 − z; (ii) 2 − x, 1 − y, 1 − z; (iii) Inline graphic − x, Inline graphic + y, Inline graphic − z; (iv) −Inline graphic + x, Inline graphic − y, −Inline graphic + z; (v) Inline graphic + x, Inline graphic − y, −Inline graphic + z; (vi) 2 − x, 2 − y, 1 − z; (vii 1 − x, 2 − y, 1 − z.

Figure 4.

Figure 4

(a) View down the c axis showing an infinite chain of H2btc–Hbtc2− anions running along the a axis. A plane formed by the H2-mIm+ ions (green) and the H2btc-Hbtc2− chains, view down (b) the c axis and (c) the a axis.

Figure 5.

Figure 5

Crystal packing in compound 1 viewed down the a axis showing the π–π inter­actions and hydrogen bonding connecting the 2H-mim+–H2btc–Hbtc2− planes that run parallel to the ab plane. The H2-mIm+ ions are highlighted in green.

A graph-set analysis (Etter et al., 1990; Bernstein et al., 1995) allows a more detailed examination of the inter­molecular inter­action patterns within 1. The analysis reveals that 1 contains nine motifs at the first-level graph set, including eight discrete D(2) motifs and one chain motif C(8), labelled as type c in Table 4. The second-level graph set (Table 5) reveals a complex network of inter­molecular inter­actions within 1, featuring various patterns: Inline graphic(16) >a<b, Inline graphic(12) >d<e, several D33 such as >a>c<a, >d>c<d, >e>c<e, >f>c<f, >i>c<I and many D22, for example >a<d, >a<e and >a<f. A different pattern, rather than discrete and chain, appears in the third order graph set with formation of the rings Inline graphic(42) >a>cba<c<b (Fig. 6a) and Inline graphic(36) >c<d>e<c<d>e (Fig. 6b).

Table 5. Second- and third-level graph sets.

  Second-level   Third-level    
Inline graphic(16) >a<b Inline graphic(18) >a>c<b D33(17) >d<b<h
D33(17) >a>c<a Inline graphic(24) >a<c<b D33(13) >e<b<g
D22(5) >a<d Inline graphic(42) >a>cba<c<b D33(13) >e<b<h
D22(9) >a<e D33(17) >a<c<d Inline graphic(16) >b<f>g
D22(9) >a<f D33(17) >a>c<d D33(13) >f<b<h
D22(10) >g>a D33(13) >a>c<e D33(17) >g>b<i
D22(10) >h>a D33(17) >a<c<e Inline graphic(20) >bih
D22(5) >a<i D33(13) >a>c<f Inline graphic(16) >c<e>d
D23 (11) >b>c<b D33(17) >a<c<f Inline graphic(20) >c<d>e
D22(9) >b<d D33(17) >a<c<i Inline graphic(36) >c<d>e<c<d>e
D22(5) >b<e D33(17) >a>c<i D33(13) >d>c<f
D22(5) >b<f D33(13) >d<a<g D33(17) >d<c<f
D22(10) >g>b D33(13) >d<a<h D33(17) >d<c<i
D22(10) >h>b D33(17) >e<a<g D33(17) >d>c<i
D22(9) >b<i D33(17) >e<a<h D33(13) >e<c<f
D33(17) >d>c<d Inline graphic(20) >a<f>g D33(13) >e>c<f
D33(13) >e>c<e D33(17) >f<a<h D33(13) >e<c<i
D33(13) >f>c<f D33(13) >g>a<i D33(17) >e>c<i
D33(17) >i>c<i C33(16) >aih D33(13) >f<c<i
Inline graphic(12) >d<e D23(11) >b<c<d D33(17) >f>c<i
D22(9) >d<f D33(17) >b>c<d D33(14) >d<f>g
D12(3) >d<i D23(11) >b<c<e D23(8) >dih
D12(3) >e<f D33(13) >b>c<e D23(8) >e<f>g
D22(9) >e<i D23(11) >b<c<f D33(14) >eih
D22(7) <f>g D33(13) >b>c<f D33(10) >h<g>f
D22(9) >f<i D23(11) >b<c<i D33(14) >i<f>g
D22(5) >g<h D33(17) >b>c<i D33(14) >fih
D22(7) <h>i D33 (17) >d<b<g D33(10) >g<h>i

Figure 6.

Figure 6

View along the c axis showing the formation of hydrogen-bonded ring patterns with the graph-set descriptors: (a) Inline graphic(42) and (b) Inline graphic(36).

4. Database survey

No reported structures of the title compound were found in the Cambridge Structural Database (CSD version 5.45, update of November 2023; Groom et al., 2016). The closest to 1 is the previously mentioned structure reported under the refcode LODSUW (Baletska et al., 2023).

Among the various reported structures containing the H2-mIm+ cation, we highlight those with the following refcodes: BEZGEU (Dhanabal et al., 2013), BOTTEK, BOTTIO, BOTTOU (Meng et al., 2009), BOTTEK01, BOTTIO01, BOTTOU01, VURBUG, VURCAN, VURFAQ (Callear et al., 2010), DAMGIL (Hinokimoto et al., 2021), DOWVUI (Shi et al., 2014), FAMFIL, FAMFOR, FAMFUX (Zhang & Zhang, 2017), FETDAK (Aakeröy et al., 2005), and HILSOL (Qu, 2007).

Organic compounds containing both H2btc and Hbtc2- were found with the refcodes: RAVPOV (Arunachalam et al., 2012), SADKUE (Fan et al., 2003), and TUBBAT (Melendez et al., 1996). Some compounds with low resemblance to the title compound were reported under the refcodes CUMQUX (Basu et al., 2009), HICSUJ (Lie et al., 2013), ILELAO (Li & Li, 2016), JOCBAH (Falek et al., 2019), LUBGUM, LUBHAT, LUBHEX, LUBHIB, LUBHOH, LUBHUN, LUBJAV (Singh et al., 2015), SUHRAR (Rajkumar et al., 2020), YOCSIT (Habib & Janiak, 2008), and WOGBED (Sosa-Rivadeneyra et al., 2024).

5. Synthesis and crystallization

To obtain the title compound, 800 µl of an ethano­lic solution of 2-mlm (1.57 M) was diluted in 20 ml of ethanol, followed by the addition of 1 ml of an ethano­lic solution of H3btc (0.12 M). The mixture was shaken gently, but no visible changes were observed after 5 min. Crystals of 1 were obtained after 24 h.

6. Refinement

Crystal data, data collection, and structure refinement details are summarized in Table 6. The positions of hydrogen atoms were refined with Uiso(H) = 1.2Ueq(C) for CH. Hydrogen atoms bonded to nitro­gen atoms (N—H) and oxygen atoms (O—H) were treated with free refinement of bond distances and isotropic displacement parameters (Uiso).

Table 6. Experimental details.

Crystal data
Chemical formula 3C4H7N2+·C9H4O62−·C9H5O6
M r 666.60
Crystal system, space group Monoclinic, P21/n
Temperature (K) 100
a, b, c (Å) 14.172 (3), 15.902 (3), 14.644 (3)
β (°) 110.46 (3)
V3) 3092.0 (12)
Z 4
Radiation type Mo Kα
μ (mm−1) 0.11
Crystal size (mm) 0.08 × 0.07 × 0.05
 
Data collection
Diffractometer Bruker P4
Absorption correction Multi-scan (SADABS; Krause et al., 2015)
Tmin, Tmax 0.695, 0.746
No. of measured, independent and observed [I > 2σ(I)] reflections 36740, 7127, 5287
R int 0.052
(sin θ/λ)max−1) 0.651
 
Refinement
R[F2 > 2σ(F2)], wR(F2), S 0.045, 0.119, 1.05
No. of reflections 7127
No. of parameters 457
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.35, −0.27

Computer programs: APEX2 and SAINT (Bruker, 2016), SHELXT2018/2 (Sheldrick, 2015a), SHELXL2018/3 (Sheldrick, 2015b) and OLEX2 (Dolomanov et al., 2009).

Supplementary Material

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025002063/jq2038sup1.cif

e-81-00303-sup1.cif (490KB, cif)
e-81-00303-Isup2.cml (12KB, cml)

Supporting information file. DOI: 10.1107/S2056989025002063/jq2038Isup2.cml

CCDC reference: 2428811

Additional supporting information: crystallographic information; 3D view; checkCIF report

supplementary crystallographic information

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Crystal data

3C4H7N2+·C9H4O62·C9H5O6 F(000) = 1392
Mr = 666.60 Dx = 1.432 Mg m3
Monoclinic, P21/n Mo Kα radiation, λ = 0.71073 Å
a = 14.172 (3) Å Cell parameters from 5589 reflections
b = 15.902 (3) Å θ = 2.5–26.9°
c = 14.644 (3) Å µ = 0.11 mm1
β = 110.46 (3)° T = 100 K
V = 3092.0 (12) Å3 Irregular, clear light colourless
Z = 4 0.08 × 0.07 × 0.05 mm

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Data collection

Bruker P4 diffractometer Rint = 0.052
ω scans θmax = 27.6°, θmin = 2.0°
Absorption correction: multi-scan (SADABS; Krause et al., 2015) h = −18→18
Tmin = 0.695, Tmax = 0.746 k = −17→20
36740 measured reflections l = −19→19
7127 independent reflections Standard reflections: not measured; every not measured reflections
5287 reflections with I > 2σ(I) intensity decay: not measured

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Refinement

Refinement on F2 Primary atom site location: dual
Least-squares matrix: full Hydrogen site location: inferred from neighbouring sites
R[F2 > 2σ(F2)] = 0.045 H atoms treated by a mixture of independent and constrained refinement
wR(F2) = 0.119 w = 1/[σ2(Fo2) + (0.0496P)2 + 1.5554P] where P = (Fo2 + 2Fc2)/3
S = 1.05 (Δ/σ)max < 0.001
7127 reflections Δρmax = 0.35 e Å3
457 parameters Δρmin = −0.27 e Å3
0 restraints

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Special details

Geometry. All esds (except the esd in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving l.s. planes.
Refinement. Hydrogen atoms bonded to nitrogen and oxygen were refined with free isotropic displacement parameters and bond lengths (AFIX 44/148)

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
O1 0.53578 (9) 0.64000 (8) 0.61849 (11) 0.0259 (3)
O2 0.61872 (9) 0.52011 (8) 0.62429 (10) 0.0220 (3)
H2 0.5602 (19) 0.4963 (7) 0.6328 (19) 0.053 (8)*
O3 0.68318 (10) 0.90396 (8) 0.54264 (10) 0.0241 (3)
O4 0.83140 (9) 0.89827 (8) 0.52006 (10) 0.0234 (3)
O5 1.02817 (8) 0.63301 (8) 0.58809 (9) 0.0180 (3)
O6 0.95050 (9) 0.51574 (8) 0.60965 (10) 0.0190 (3)
H6 1.0140 (19) 0.4921 (7) 0.6229 (19) 0.051 (7)*
C7 0.86039 (11) 0.64249 (11) 0.58751 (11) 0.0121 (3)
C8 0.85460 (12) 0.72890 (11) 0.57047 (11) 0.0129 (3)
H8 0.910200 0.757596 0.562900 0.015*
C9 0.76831 (12) 0.77347 (11) 0.56445 (11) 0.0128 (3)
C10 0.68832 (11) 0.73080 (11) 0.57804 (11) 0.0124 (3)
H10 0.629504 0.760943 0.575260 0.015*
C11 0.69353 (11) 0.64458 (11) 0.59565 (11) 0.0119 (3)
C12 0.77922 (11) 0.60010 (11) 0.59865 (11) 0.0121 (3)
H12 0.782241 0.540944 0.608288 0.015*
C20 0.76001 (12) 0.86677 (11) 0.54084 (12) 0.0152 (4)
C21 0.60758 (12) 0.60123 (11) 0.61338 (12) 0.0140 (3)
C22 0.95475 (12) 0.59710 (11) 0.59439 (12) 0.0137 (3)
O7 0.52944 (8) 0.55672 (8) 0.35759 (9) 0.0170 (3)
O8 0.45915 (8) 0.67838 (8) 0.37705 (9) 0.0168 (3)
O9 0.60022 (9) 0.94414 (8) 0.30521 (9) 0.0191 (3)
O10 0.73044 (8) 0.93889 (8) 0.25158 (9) 0.0168 (3)
H10A 0.7044 (12) 0.9897 (17) 0.2214 (19) 0.054 (8)*
O11 0.95291 (8) 0.68773 (7) 0.35827 (8) 0.0146 (3)
O12 0.87752 (8) 0.56353 (7) 0.34820 (9) 0.0168 (3)
C1 0.69841 (11) 0.64122 (11) 0.34545 (11) 0.0110 (3)
H1 0.704556 0.582377 0.357238 0.013*
C2 0.77796 (11) 0.68585 (10) 0.33282 (11) 0.0105 (3)
C3 0.76750 (11) 0.77131 (10) 0.31188 (11) 0.0114 (3)
H3 0.820330 0.801448 0.300719 0.014*
C4 0.67944 (12) 0.81258 (11) 0.30732 (11) 0.0121 (3)
C5 0.60164 (11) 0.76843 (11) 0.32292 (11) 0.0120 (3)
H5 0.542357 0.797249 0.321299 0.014*
C6 0.61016 (11) 0.68255 (10) 0.34084 (11) 0.0108 (3)
C17 0.52617 (11) 0.63554 (11) 0.35966 (11) 0.0120 (3)
C18 0.66564 (12) 0.90441 (11) 0.28876 (12) 0.0140 (3)
C19 0.87669 (11) 0.64296 (11) 0.34702 (11) 0.0116 (3)
N1 0.81021 (10) 0.86622 (9) −0.05350 (11) 0.0158 (3)
H1A 0.8634 (15) 0.86270 (13) −0.0687 (4) 0.036 (6)*
N2 0.65710 (10) 0.85634 (9) −0.06081 (11) 0.0169 (3)
H2A 0.5919 (19) 0.8450 (3) −0.0820 (6) 0.047 (7)*
C13 0.71886 (12) 0.84187 (12) −0.10972 (13) 0.0180 (4)
C14 0.80713 (13) 0.89782 (12) 0.03242 (13) 0.0191 (4)
H14 0.862098 0.919778 0.085000 0.023*
C15 0.71066 (13) 0.89158 (12) 0.02759 (13) 0.0202 (4)
H15 0.684631 0.908466 0.076363 0.024*
C16 0.69127 (17) 0.80710 (16) −0.20962 (16) 0.0405 (6)
H16A 0.652114 0.848892 −0.256907 0.061*
H16B 0.650842 0.756108 −0.215027 0.061*
H16C 0.752612 0.793341 −0.222948 0.061*
N3 1.04278 (11) 0.82926 (10) 0.46433 (11) 0.0190 (3)
H3A 1.0001 (13) 0.7868 (13) 0.4287 (11) 0.054 (8)*
N4 1.12129 (11) 0.94728 (10) 0.50099 (11) 0.0194 (3)
H4 1.1453 (6) 1.0059 (16) 0.49572 (18) 0.051 (7)*
C23 1.00047 (15) 0.93620 (14) 0.33006 (14) 0.0280 (5)
H23A 0.928518 0.941715 0.319353 0.042*
H23B 1.009719 0.896478 0.282717 0.042*
H23C 1.027755 0.991192 0.321944 0.042*
C24 1.05406 (13) 0.90477 (11) 0.43016 (13) 0.0177 (4)
C25 1.10444 (14) 0.82389 (12) 0.56105 (14) 0.0231 (4)
H25 1.111071 0.777215 0.603334 0.028*
C26 1.15295 (15) 0.89749 (12) 0.58330 (14) 0.0253 (4)
H26 1.200691 0.912727 0.644847 0.030*
N5 0.38559 (11) 0.94219 (10) 0.51325 (11) 0.0194 (3)
H5A 0.3614 (7) 1.0020 (16) 0.50764 (19) 0.054 (8)*
N6 0.43032 (11) 0.82074 (10) 0.47674 (12) 0.0203 (3)
H6A 0.4446 (4) 0.7773 (13) 0.4420 (10) 0.049 (7)*
C27 0.37791 (15) 0.92675 (15) 0.34081 (14) 0.0313 (5)
H27A 0.343417 0.882455 0.294699 0.047*
H27B 0.441827 0.940409 0.332440 0.047*
H27C 0.335313 0.977045 0.328545 0.047*
C28 0.41150 (14) 0.89349 (12) 0.59641 (14) 0.0223 (4)
H28 0.410189 0.910375 0.658189 0.027*
C29 0.43899 (13) 0.81759 (12) 0.57354 (13) 0.0213 (4)
H29 0.460320 0.770711 0.616009 0.026*
C30 0.39781 (13) 0.89704 (12) 0.44175 (13) 0.0195 (4)

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
O1 0.0182 (6) 0.0143 (7) 0.0524 (9) 0.0038 (5) 0.0212 (6) 0.0053 (6)
O2 0.0198 (6) 0.0087 (7) 0.0457 (8) −0.0005 (5) 0.0219 (6) 0.0028 (6)
O3 0.0297 (7) 0.0136 (7) 0.0334 (7) 0.0068 (5) 0.0167 (6) 0.0054 (6)
O4 0.0255 (6) 0.0112 (7) 0.0367 (8) −0.0038 (5) 0.0149 (6) 0.0028 (6)
O5 0.0141 (5) 0.0155 (7) 0.0271 (7) 0.0002 (5) 0.0105 (5) 0.0017 (5)
O6 0.0120 (5) 0.0089 (7) 0.0361 (7) 0.0021 (5) 0.0083 (5) 0.0016 (5)
C7 0.0131 (7) 0.0112 (9) 0.0118 (7) 0.0003 (6) 0.0039 (6) −0.0007 (6)
C8 0.0134 (7) 0.0120 (9) 0.0137 (8) −0.0024 (6) 0.0054 (6) −0.0006 (7)
C9 0.0156 (7) 0.0103 (9) 0.0117 (7) −0.0005 (6) 0.0037 (6) −0.0003 (6)
C10 0.0117 (7) 0.0121 (9) 0.0132 (7) 0.0019 (6) 0.0042 (6) −0.0017 (6)
C11 0.0124 (7) 0.0110 (9) 0.0127 (7) 0.0003 (6) 0.0048 (6) 0.0008 (6)
C12 0.0141 (7) 0.0088 (9) 0.0133 (7) 0.0001 (6) 0.0046 (6) 0.0001 (6)
C20 0.0198 (8) 0.0107 (9) 0.0156 (8) −0.0004 (7) 0.0066 (6) −0.0006 (7)
C21 0.0144 (7) 0.0108 (9) 0.0176 (8) 0.0004 (6) 0.0066 (6) −0.0004 (7)
C22 0.0145 (7) 0.0114 (9) 0.0153 (8) 0.0001 (6) 0.0051 (6) −0.0008 (7)
O7 0.0164 (6) 0.0090 (7) 0.0297 (7) −0.0022 (5) 0.0131 (5) −0.0004 (5)
O8 0.0149 (5) 0.0150 (7) 0.0255 (6) 0.0011 (5) 0.0134 (5) 0.0003 (5)
O9 0.0242 (6) 0.0121 (7) 0.0263 (7) 0.0059 (5) 0.0155 (5) 0.0020 (5)
O10 0.0162 (6) 0.0102 (7) 0.0252 (7) 0.0003 (5) 0.0086 (5) 0.0046 (5)
O11 0.0092 (5) 0.0118 (6) 0.0223 (6) −0.0014 (4) 0.0050 (5) −0.0006 (5)
O12 0.0129 (5) 0.0075 (6) 0.0304 (7) 0.0010 (5) 0.0080 (5) −0.0024 (5)
C1 0.0130 (7) 0.0089 (9) 0.0112 (7) −0.0005 (6) 0.0045 (6) −0.0009 (6)
C2 0.0112 (7) 0.0086 (9) 0.0118 (7) −0.0002 (6) 0.0041 (6) −0.0020 (6)
C3 0.0105 (7) 0.0111 (9) 0.0131 (7) −0.0027 (6) 0.0047 (6) −0.0006 (6)
C4 0.0143 (7) 0.0101 (9) 0.0119 (7) 0.0012 (6) 0.0044 (6) 0.0004 (6)
C5 0.0114 (7) 0.0127 (9) 0.0130 (7) 0.0021 (6) 0.0058 (6) −0.0001 (6)
C6 0.0117 (7) 0.0101 (9) 0.0118 (7) −0.0004 (6) 0.0055 (6) −0.0008 (6)
C17 0.0132 (7) 0.0126 (9) 0.0115 (7) −0.0011 (6) 0.0060 (6) 0.0010 (6)
C18 0.0151 (7) 0.0120 (9) 0.0145 (8) −0.0007 (6) 0.0046 (6) 0.0000 (7)
C19 0.0121 (7) 0.0108 (9) 0.0122 (7) 0.0000 (6) 0.0046 (6) −0.0010 (6)
N1 0.0130 (6) 0.0137 (8) 0.0243 (8) 0.0002 (6) 0.0111 (6) 0.0004 (6)
N2 0.0105 (6) 0.0143 (8) 0.0263 (8) −0.0011 (6) 0.0071 (6) 0.0015 (6)
C13 0.0175 (8) 0.0144 (10) 0.0233 (9) 0.0017 (7) 0.0088 (7) −0.0002 (7)
C14 0.0162 (8) 0.0208 (10) 0.0194 (9) 0.0005 (7) 0.0051 (7) −0.0016 (7)
C15 0.0200 (8) 0.0229 (11) 0.0210 (9) 0.0012 (7) 0.0114 (7) −0.0002 (8)
C16 0.0375 (12) 0.0498 (16) 0.0311 (12) 0.0013 (11) 0.0079 (9) −0.0155 (11)
N3 0.0185 (7) 0.0134 (8) 0.0254 (8) −0.0034 (6) 0.0081 (6) −0.0021 (6)
N4 0.0237 (7) 0.0116 (8) 0.0232 (8) −0.0034 (6) 0.0087 (6) −0.0001 (6)
C23 0.0291 (10) 0.0294 (12) 0.0227 (10) −0.0011 (9) 0.0055 (8) 0.0049 (8)
C24 0.0187 (8) 0.0143 (10) 0.0225 (9) −0.0010 (7) 0.0102 (7) −0.0013 (7)
C25 0.0250 (9) 0.0177 (10) 0.0246 (9) −0.0021 (8) 0.0061 (7) 0.0048 (8)
C26 0.0306 (10) 0.0203 (11) 0.0203 (9) −0.0054 (8) 0.0030 (8) 0.0027 (8)
N5 0.0235 (7) 0.0125 (8) 0.0245 (8) 0.0036 (6) 0.0113 (6) −0.0008 (6)
N6 0.0194 (7) 0.0152 (9) 0.0276 (8) 0.0025 (6) 0.0096 (6) −0.0050 (7)
C27 0.0305 (10) 0.0392 (14) 0.0256 (10) 0.0070 (9) 0.0115 (8) 0.0062 (9)
C28 0.0266 (9) 0.0191 (11) 0.0226 (9) 0.0031 (8) 0.0105 (7) −0.0009 (8)
C29 0.0222 (8) 0.0171 (10) 0.0247 (9) 0.0045 (7) 0.0083 (7) 0.0019 (8)
C30 0.0165 (8) 0.0196 (10) 0.0234 (9) 0.0021 (7) 0.0082 (7) −0.0009 (8)

Tris(2-methyl-1H-imidazol-3-ium) 5-carboxybenzene-1,3-dicarboxylate 3,5-dicarboxybenzoate . Geometric parameters (Å, º)

O1—C21 1.214 (2) N1—H1A 0.86 (2)
O2—H2 0.96 (3) N1—C13 1.326 (2)
O2—C21 1.303 (2) N1—C14 1.370 (2)
O3—C20 1.247 (2) N2—H2A 0.89 (3)
O4—C20 1.258 (2) N2—C13 1.330 (2)
O5—C22 1.218 (2) N2—C15 1.371 (2)
O6—H6 0.93 (3) C13—C16 1.483 (3)
O6—C22 1.318 (2) C14—H14 0.9500
C7—C8 1.394 (2) C14—C15 1.348 (2)
C7—C12 1.391 (2) C15—H15 0.9500
C7—C22 1.492 (2) C16—H16A 0.9800
C8—H8 0.9500 C16—H16B 0.9800
C8—C9 1.389 (2) C16—H16C 0.9800
C9—C10 1.394 (2) N3—H3A 0.93 (3)
C9—C20 1.519 (2) N3—C24 1.332 (2)
C10—H10 0.9500 N3—C25 1.383 (2)
C10—C11 1.392 (2) N4—H4 1.00 (3)
C11—C12 1.393 (2) N4—C24 1.323 (2)
C11—C21 1.499 (2) N4—C26 1.380 (2)
C12—H12 0.9500 C23—H23A 0.9800
O7—C17 1.255 (2) C23—H23B 0.9800
O8—C17 1.2650 (19) C23—H23C 0.9800
O9—C18 1.214 (2) C23—C24 1.482 (3)
O10—H10A 0.93 (3) C25—H25 0.9500
O10—C18 1.338 (2) C25—C26 1.339 (3)
O11—C19 1.2555 (19) C26—H26 0.9500
O12—C19 1.263 (2) N5—H5A 1.01 (3)
C1—H1 0.9500 N5—C28 1.380 (2)
C1—C2 1.398 (2) N5—C30 1.330 (2)
C1—C6 1.393 (2) N6—H6A 0.92 (3)
C2—C3 1.390 (2) N6—C29 1.380 (2)
C2—C19 1.504 (2) N6—C30 1.335 (2)
C3—H3 0.9500 C27—H27A 0.9800
C3—C4 1.391 (2) C27—H27B 0.9800
C4—C5 1.392 (2) C27—H27C 0.9800
C4—C18 1.486 (2) C27—C30 1.482 (3)
C5—H5 0.9500 C28—H28 0.9500
C5—C6 1.388 (2) C28—C29 1.346 (3)
C6—C17 1.510 (2) C29—H29 0.9500
C21—O2—H2 109.5 C13—N2—H2A 125.4
C22—O6—H6 109.5 C13—N2—C15 109.13 (14)
C8—C7—C22 118.97 (14) C15—N2—H2A 125.4
C12—C7—C8 119.95 (15) N1—C13—N2 107.36 (16)
C12—C7—C22 121.07 (15) N1—C13—C16 125.80 (17)
C7—C8—H8 119.7 N2—C13—C16 126.82 (17)
C9—C8—C7 120.64 (15) N1—C14—H14 126.8
C9—C8—H8 119.7 C15—C14—N1 106.39 (15)
C8—C9—C10 118.98 (16) C15—C14—H14 126.8
C8—C9—C20 120.62 (15) N2—C15—H15 126.4
C10—C9—C20 120.39 (15) C14—C15—N2 107.24 (16)
C9—C10—H10 119.6 C14—C15—H15 126.4
C11—C10—C9 120.84 (15) C13—C16—H16A 109.5
C11—C10—H10 119.6 C13—C16—H16B 109.5
C10—C11—C12 119.68 (15) C13—C16—H16C 109.5
C10—C11—C21 119.43 (14) H16A—C16—H16B 109.5
C12—C11—C21 120.88 (15) H16A—C16—H16C 109.5
C7—C12—C11 119.86 (16) H16B—C16—H16C 109.5
C7—C12—H12 120.1 C24—N3—H3A 125.5
C11—C12—H12 120.1 C24—N3—C25 108.95 (15)
O3—C20—O4 126.72 (17) C25—N3—H3A 125.5
O3—C20—C9 117.21 (15) C24—N4—H4 125.8
O4—C20—C9 116.06 (15) C24—N4—C26 108.48 (16)
O1—C21—O2 124.30 (16) C26—N4—H4 125.8
O1—C21—C11 121.75 (16) H23A—C23—H23B 109.5
O2—C21—C11 113.94 (14) H23A—C23—H23C 109.5
O5—C22—O6 124.31 (15) H23B—C23—H23C 109.5
O5—C22—C7 122.51 (16) C24—C23—H23A 109.5
O6—C22—C7 113.17 (14) C24—C23—H23B 109.5
C18—O10—H10A 109.5 C24—C23—H23C 109.5
C2—C1—H1 119.8 N3—C24—C23 126.04 (17)
C6—C1—H1 119.8 N4—C24—N3 108.31 (16)
C6—C1—C2 120.38 (16) N4—C24—C23 125.65 (17)
C1—C2—C19 120.38 (15) N3—C25—H25 126.8
C3—C2—C1 119.79 (14) C26—C25—N3 106.40 (17)
C3—C2—C19 119.76 (14) C26—C25—H25 126.8
C2—C3—H3 120.1 N4—C26—H26 126.1
C2—C3—C4 119.79 (15) C25—C26—N4 107.85 (16)
C4—C3—H3 120.1 C25—C26—H26 126.1
C3—C4—C5 120.21 (16) C28—N5—H5A 125.5
C3—C4—C18 122.08 (15) C30—N5—H5A 125.5
C5—C4—C18 117.69 (14) C30—N5—C28 108.92 (16)
C4—C5—H5 119.8 C29—N6—H6A 125.6
C6—C5—C4 120.39 (15) C30—N6—H6A 125.6
C6—C5—H5 119.8 C30—N6—C29 108.78 (16)
C1—C6—C17 120.59 (15) H27A—C27—H27B 109.5
C5—C6—C1 119.38 (15) H27A—C27—H27C 109.5
C5—C6—C17 119.97 (14) H27B—C27—H27C 109.5
O7—C17—O8 125.41 (15) C30—C27—H27A 109.5
O7—C17—C6 116.86 (14) C30—C27—H27B 109.5
O8—C17—C6 117.73 (15) C30—C27—H27C 109.5
O9—C18—O10 123.24 (16) N5—C28—H28 126.4
O9—C18—C4 122.42 (15) C29—C28—N5 107.12 (17)
O10—C18—C4 114.33 (14) C29—C28—H28 126.4
O11—C19—O12 124.16 (14) N6—C29—H29 126.5
O11—C19—C2 118.50 (15) C28—C29—N6 107.06 (17)
O12—C19—C2 117.33 (14) C28—C29—H29 126.5
C13—N1—H1A 125.1 N5—C30—N6 108.11 (16)
C13—N1—C14 109.87 (15) N5—C30—C27 125.55 (18)
C14—N1—H1A 125.1 N6—C30—C27 126.33 (17)
C7—C8—C9—C10 1.5 (2) C3—C4—C5—C6 −1.5 (2)
C7—C8—C9—C20 −176.91 (14) C3—C4—C18—O9 −163.64 (16)
C8—C7—C12—C11 −1.9 (2) C3—C4—C18—O10 17.1 (2)
C8—C7—C22—O5 1.9 (2) C4—C5—C6—C1 1.6 (2)
C8—C7—C22—O6 −179.37 (14) C4—C5—C6—C17 178.78 (14)
C8—C9—C10—C11 −1.2 (2) C5—C4—C18—O9 14.6 (2)
C8—C9—C20—O3 −175.60 (15) C5—C4—C18—O10 −164.63 (14)
C8—C9—C20—O4 5.4 (2) C5—C6—C17—O7 167.31 (14)
C9—C10—C11—C12 −0.7 (2) C5—C6—C17—O8 −13.4 (2)
C9—C10—C11—C21 177.89 (14) C6—C1—C2—C3 −2.4 (2)
C10—C9—C20—O3 6.0 (2) C6—C1—C2—C19 174.27 (14)
C10—C9—C20—O4 −173.05 (15) C18—C4—C5—C6 −179.87 (14)
C10—C11—C12—C7 2.3 (2) C19—C2—C3—C4 −174.28 (14)
C10—C11—C21—O1 −4.4 (2) N1—C14—C15—N2 0.1 (2)
C10—C11—C21—O2 176.85 (15) C13—N1—C14—C15 0.4 (2)
C12—C7—C8—C9 0.0 (2) C13—N2—C15—C14 −0.5 (2)
C12—C7—C22—O5 −177.56 (16) C14—N1—C13—N2 −0.8 (2)
C12—C7—C22—O6 1.2 (2) C14—N1—C13—C16 177.78 (19)
C12—C11—C21—O1 174.23 (16) C15—N2—C13—N1 0.8 (2)
C12—C11—C21—O2 −4.5 (2) C15—N2—C13—C16 −177.7 (2)
C20—C9—C10—C11 177.28 (14) N3—C25—C26—N4 0.0 (2)
C21—C11—C12—C7 −176.33 (14) C24—N3—C25—C26 −0.4 (2)
C22—C7—C8—C9 −179.44 (14) C24—N4—C26—C25 0.5 (2)
C22—C7—C12—C11 177.51 (14) C25—N3—C24—N4 0.7 (2)
C1—C2—C3—C4 2.5 (2) C25—N3—C24—C23 −179.16 (18)
C1—C2—C19—O11 −163.18 (15) C26—N4—C24—N3 −0.7 (2)
C1—C2—C19—O12 15.8 (2) C26—N4—C24—C23 179.13 (18)
C1—C6—C17—O7 −15.5 (2) N5—C28—C29—N6 0.4 (2)
C1—C6—C17—O8 163.84 (14) C28—N5—C30—N6 0.3 (2)
C2—C1—C6—C5 0.4 (2) C28—N5—C30—C27 179.94 (17)
C2—C1—C6—C17 −176.77 (14) C29—N6—C30—N5 0.0 (2)
C2—C3—C4—C5 −0.5 (2) C29—N6—C30—C27 −179.67 (18)
C2—C3—C4—C18 177.76 (14) C30—N5—C28—C29 −0.5 (2)
C3—C2—C19—O11 13.5 (2) C30—N6—C29—C28 −0.2 (2)
C3—C2—C19—O12 −167.44 (15)

Funding Statement

Funding for this research was provided by: HG-recruitment, HG-Innovation ‘ECRAPS’, HG-Innovation DSF/DASHH and CMWS (grant to ST); LMAH thanks the DESY-Helmholtz-Summer student fund for financial support.

References

  1. Aakeröy, C. B., Desper, J. & Levin, B. (2005). CrystEngComm, 7, 102–107.
  2. Abdelhamid, H. N. (2021). Curr. Med. Chem.28, 7023–7075. [DOI] [PubMed]
  3. Arunachalam, M., Chakraborty, S., Marivel, S. & Ghosh, P. (2012). Cryst. Growth Des.12, 2097–2108.
  4. Baletska, S., Techert, S. & Velazquez-Garcia, J. de J. (2023). Acta Cryst. E79, 1088–1092. [DOI] [PMC free article] [PubMed]
  5. Banerjee, R., Phan, A., Wang, B., Knobler, C., Furukawa, H., O’Keeffe, M. & Yaghi, O. M. (2008). Science, 319, 939–943. [DOI] [PubMed]
  6. Basu, T., Sparkes, H. A. & Mondal, R. (2009). Cryst. Growth Des.9, 5164–5175.
  7. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl.34, 1555–1573.
  8. Bruker (2016). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
  9. Callear, S. K., Hursthouse, M. B. & Threlfall, T. L. (2010). CrystEngComm, 12, 898–908.
  10. Chan, P. C. (2004). TOXIC Rep Ser, 1–G12. [PubMed]
  11. Chen, Z., Zhang, Q., Huang, L., Li, R., Li, W., Xu, G. & Cheng, H. (2014). J. Phys. Chem. C, 118, 21244–21249.
  12. Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G. & Williams, I. D. (1999). Science, 283, 1148–1150. [DOI] [PubMed]
  13. Dhanabal, T., Sethuram, M., Amirthaganesan, G. & Das, S. K. (2013). J. Mol. Struct.1045, 112–123.
  14. Dolomanov, O. V., Bourhis, L. J., Gildea, R. J., Howard, J. A. K. & Puschmann, H. (2009). J. Appl. Cryst.42, 339–341.
  15. Emani, S., Vangala, A., Buonocore, F., Yarandi, N. & Calabrese, G. (2023). Pharmaceutics15, 1084. [DOI] [PMC free article] [PubMed]
  16. Etter, M. C., MacDonald, J. C. & Bernstein, J. (1990). Acta Cryst. B46, 256–262. [DOI] [PubMed]
  17. Falek, W., Benali-Cherif, R., Golea, L., Samai, S., Benali-Cherif, N., Bendeif, E.-E. & Daoud, I. (2019). J. Mol. Struct.1192, 132–144.
  18. Fan, Q.-R., Shi, X., Xin, M.-H., Wu, G., Tian, G., Zhu, G. S., Li, Y.-F., Ye, L., Wang, C.-L., Zhang, Z. D., Tang, L. L. & Qiu, S.-L. (2003). Gaodeng Xuexiao Huaxue Xuebao, 24, 28.
  19. Férey, G., Serre, C., Mellot–Draznieks, C., Millange, F., Surblé, S., Dutour, J. & Margiolaki, I. (2004). Angew. Chem. Int. Ed.43, 6296–6301. [DOI] [PubMed]
  20. Groom, C. R., Bruno, I. J., Lightfoot, M. P. & Ward, S. C. (2016). Acta Cryst. B72, 171–179. [DOI] [PMC free article] [PubMed]
  21. Ha, N. T. N., Gopakumar, T. G., Gutzler, R., Lackinger, M., Tang, H. & Hietschold, M. (2010). J. Phys. Chem. C, 114, 3531–3536.
  22. Habib, H. A. & Janiak, C. (2008). Acta Cryst. E64, o1199. [DOI] [PMC free article] [PubMed]
  23. Hachuła, B., Nowak, M. & Kusz, J. (2010). J. Chem. Crystallogr.40, 201–206.
  24. Hinokimoto, A., Izu, H., Wei, Y.-S., Nakajo, T., Matsuda, R. & Horike, S. (2021). Cryst. Growth Des.21, 6031–6036.
  25. Huang, H., Zhang, W., Liu, D., Liu, B., Chen, G. & Zhong, C. (2011). Chem. Eng. Sci.66, 6297–6305.
  26. Iancu, V., Braun, K.-F., Schouteden, K. & Van Haesendonck, C. (2013). Langmuir, 29, 11593–11599. [DOI] [PubMed]
  27. Korolkov, V. V., Allen, S., Roberts, C. J. & Tendler, S. J. B. (2012). J. Phys. Chem. C, 116, 11519–11525.
  28. Krause, L., Herbst-Irmer, R., Sheldrick, G. M. & Stalke, D. (2015). J. Appl. Cryst.48, 3–10. [DOI] [PMC free article] [PubMed]
  29. Li, S.-Y. & Li, P. (2016). Z. Kristallogr.231, 525–528.
  30. Lie, S., Maris, T., Malveau, C., Beaudoin, D., Helzy, F. & Wuest, J. D. (2013). Cryst. Growth Des.13, 1872–1877.
  31. Lin, X., Wang, Z., Cao, S., Hu, Y., Liu, S., Chen, X., Chen, H., Zhang, X., Wei, S., Xu, H., Cheng, Z., Hou, Q., Sun, D. & Lu, X. (2023). Nat. Commun.14, 6714. [DOI] [PMC free article] [PubMed]
  32. MacLeod, J. (2019). J. Phys. D Appl. Phys.53, 043002.
  33. Macrae, C. F., Sovago, I., Cottrell, S. J., Galek, P. T. A., McCabe, P., Pidcock, E., Platings, M., Shields, G. P., Stevens, J. S., Towler, M. & Wood, P. A. (2020). J. Appl. Cryst.53, 226–235. [DOI] [PMC free article] [PubMed]
  34. Mat Yusuf, S., Ng, Y., Ayub, A., Ngalim, S. & Lim, V. (2017). Polymers, 9, 311. [DOI] [PMC free article] [PubMed]
  35. Melendez, R. E., Sharma, C. V. K., Zaworotko, M. J., Bauer, C. & Rogers, R. D. (1996). Angew. Chem. Int. Ed. Engl.35, 2213–2215.
  36. Meng, X.-G., Cheng, C.-X. & Yan, G. (2009). Acta Cryst. C65, o217–o221. [DOI] [PubMed]
  37. Park, K. S., Ni, Z., Côté, A. P., Choi, J. Y., Huang, R., Uribe-Romo, F. J., Chae, H. K., O’Keeffe, M. & Yaghi, O. M. (2006). Proc. Natl Acad. Sci. USA, 103, 10186–10191. [DOI] [PMC free article] [PubMed]
  38. Qu, S. (2007). Acta Cryst. E63, o4071.
  39. Rajkumar, M., Muthuraja, P., Dhandapani, M. & Chandramohan, A. (2020). Opt. Laser Technol.124, 105970.
  40. Salamończyk, G. M. (2011). Tetrahedron Lett.52, 155–158.
  41. Sheldrick, G. M. (2015a). Acta Cryst. A71, 3–8.
  42. Sheldrick, G. M. (2015b). Acta Cryst. C71, 3–8.
  43. Shi, C., Wei, B. & Zhang, W. (2014). Cryst. Growth Des.14, 6570–6580.
  44. Singh, U. P., Tomar, K. & Kashyap, S. (2015). CrystEngComm, 17, 1421–1433.
  45. Song, Y., Yu, C., Ma, D. & Liu, K. (2024). Coord. Chem. Rev.499, 215492.
  46. Sosa-Rivadeneyra, M. V., Rodríguez, J. C. P., Torres, Y., Bernès, S., Percino, M. J. & Höpfl, H. (2024). J. Mol. Struct.1308, 138118.
  47. Sun, C.-Y., Qin, C., Wang, X.-L., Yang, G.-S., Shao, K.-Z., Lan, Y.-Q., Su, Z.-M., Huang, P., Wang, C.-G. & Wang, E.-B. (2012). Dalton Trans.41, 6906–6909. [DOI] [PubMed]
  48. Tothadi, S., Koner, K., Dey, K., Addicoat, M. & Banerjee, R. (2020). ACS Appl. Mater.12, 15588–15594. [DOI] [PubMed]
  49. Velazquez-Garcia, J. de J. & Techert, S. (2022). Acta Cryst. E78, 814–817. [DOI] [PMC free article] [PubMed]
  50. Zhang, X.-R. & Zhang, L. (2017). J. Mol. Struct.1137, 320–327.
  51. Zhao, T., Nie, S., Luo, M., Xiao, P., Zou, M. & Chen, Y. (2024). J. Alloys Compd.974, 172897.
  52. Zhong, G., Liu, D. & Zhang, J. (2018a). Cryst. Growth Des.18, 7730–7744.
  53. Zhong, G., Liu, D. & Zhang, J. (2018b). J. Mater. Chem. A, 6, 1887–1899.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) I. DOI: 10.1107/S2056989025002063/jq2038sup1.cif

e-81-00303-sup1.cif (490KB, cif)
e-81-00303-Isup2.cml (12KB, cml)

Supporting information file. DOI: 10.1107/S2056989025002063/jq2038Isup2.cml

CCDC reference: 2428811

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Crystallographic Communications are provided here courtesy of International Union of Crystallography

RESOURCES