Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1951 Dec;50(2):145–154. doi: 10.1042/bj0500145

Pathways of pyruvate metabolism in the mammary gland*

C Terner 1
PMCID: PMC1197623  PMID: 14904385

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. COXON R. V., LIEBECQ C., PETERS R. A. The pyruvate-oxidase system in brain and the tricarboxylic acid cycle. Biochem J. 1949;45(3):320–325. [PMC free article] [PubMed] [Google Scholar]
  2. Dickens F., Greville G. D. The metabolism of normal and tumour tissue: The measurement of respiratory quotient, respiration and glycolysis with the aid of the constant-volume differential manometer. Biochem J. 1933;27(5):1479–1486. doi: 10.1042/bj0271479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Dickens F., Simer F. The metabolism of normal and tumour tissue: A method for the measurement of respiratory quotient in serum. Biochem J. 1931;25(4):973–984. doi: 10.1042/bj0250973. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. FOLLEY S. J., FRENCH T. H. The intermediary metabolism of the mammary gland; acetate metabolism of lactating mammary gland slices with special reference to milk fat synthesis. Biochem J. 1950 Apr;46(4):465–473. doi: 10.1042/bj0460465. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. FOLLEY S. J., FRENCH T. H. The intermediary metabolism of the mammary gland; respiration and acid production of mammary tissue during pregnancy, lactation and involution in the rat. Biochem J. 1949;45(3):270–275. doi: 10.1042/bj0450270. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Folley S. J., French T. H. The intermediary metabolism of the mammary gland. 1. Respiration of lactating mammary gland slices in presence of carbohydrates. Biochem J. 1949;45(2):117–125. [PMC free article] [PubMed] [Google Scholar]
  7. Krebs H. A., Eggleston L. V. Metabolism of acetoacetate in animal tissues. 1. Biochem J. 1945;39(5):408–419. [PMC free article] [PubMed] [Google Scholar]
  8. Krebs H. A., Eggleston L. V. The oxidation of pyruvate in pigeon breast muscle. Biochem J. 1940 Mar;34(3):442–459. doi: 10.1042/bj0340442. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Long C., Peters R. A. Pyruvate oxidation in brain: Evidence derived from the metabolism of alpha-ketobutyric acid. Biochem J. 1939 May;33(5):759–773. doi: 10.1042/bj0330759. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Long C. Pyruvate oxidation in brain: The oxidation products of pyruvic acid. Biochem J. 1938 Oct;32(10):1711–1717. doi: 10.1042/bj0321711. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Markham R. A steam distillation apparatus suitable for micro-Kjeldahl analysis. Biochem J. 1942 Dec;36(10-12):790–791. doi: 10.1042/bj0360790. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. POPJAK G., FRENCH T. H., FOLLEY S. J. Utilization of acetate for milk-fat synthesis in the lactating goat. Biochem J. 1951 Apr;48(4):411–416. doi: 10.1042/bj0480411. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. WEIL-MALHERBE H., BONE A. D. The microestimation of citric acid. Biochem J. 1949;45(4):377–381. doi: 10.1042/bj0450377. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES