Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Oct;331:429–441. doi: 10.1113/jphysiol.1982.sp014380

Effects of β-adrenergic stimulation on calcium movements in rabbit aortic smooth muscle: relationship with cyclic AMP

Kaushik D Meisher 1,*, Cornelis van Breemen 1
PMCID: PMC1197757  PMID: 6296369

Abstract

1. The effects of isoprenaline (10-6 M) on relaxation, unidirectional as well as net Ca2+ fluxes, and cyclic AMP levels were investigated in rabbit aorta under the condition of high-K+ depolarization in the presence of phentolamine (10-5 M).

2. Isoprenaline (10-6 M) caused significant inhibition of Ca2+ influx stimulated by 145 mM-K+ (0 Na+) solution. The time courses of Ca2+ influx inhibition and relaxation by isoprenaline were parallel. Isoprenaline also caused a significant inhibition of high-K+-induced gain in net Ca2+ content.

3. Ro 20-1724 (1 mM), a phosphodiesterase inhibitor, also caused relaxation and Ca2+ influx inhibition in high-K+-depolarized rabbit aorta. Pre-treatment with Ro 20-1724 potentiated isoprenaline-induced Ca2+ influx inhibition and relaxation.

4. Isoprenaline and Ro 20-1724 each alone increased cyclic AMP levels. Furthermore pre-treatment with Ro 20-1724 caused potentiation of isoprenaline-induced increases in cyclic AMP levels.

5. At submaximal concentration, D600 (10-7 M) caused partial inhibition of high-K+-stimulated Ca2+ influx and produced relaxation. However, unlike Ro 20-1724, it did not potentiate isoprenaline-induced Ca2+ influx inhibition and relaxation. D600 does not increase cyclic AMP levels in smooth muscle.

6. Dibutyryl cyclic AMP (1 mM), a lipid-soluble analogue of cyclic AMP, caused relaxation and inhibited high-K+-stimulated Ca2+ influx.

7. Isoprenaline failed to cause stimulation of Ca2+ efflux in high-K+-depolarized rabbit aorta.

8. It is concluded that the inhibition of Ca2+ influx may be one of the mechanisms by which β-receptor stimulation can reduce intracellular free Ca2+ to promote relaxation of smooth muscle. The data support the involvement of cyclic AMP in this action of the β-agonist.

9. Since the experiments were conducted in 145 mM-K+ (0 Na+) depolarizing conditions, the role of hyperpolarization or of a Na+—Ca2+ exchange mechanism in isoprenaline-induced Ca2+ influx inhibition and/or relaxation can be excluded.

Full text

PDF
429

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Aaronson P., van Breemen C. Effects of sodium gradient manipulation upon cellular calcium, 45Ca fluxes and cellular sodium in the guinea-pig taenia coli. J Physiol. 1981;319:443–461. doi: 10.1113/jphysiol.1981.sp013920. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Adelstein R. S., Hathaway D. R. Role of calcium and cyclic adenosine 3':5' monophosphate in regulating smooth muscle contraction. Mechanisms of excitation-contraction coupling in smooth muscle. Am J Cardiol. 1979 Oct 22;44(5):783–787. doi: 10.1016/0002-9149(79)90197-8. [DOI] [PubMed] [Google Scholar]
  3. Bülbring E., den Hertog A. The action of isoprenaline on the smooth muscle of the guinea-pig taenia coli. J Physiol. 1980 Jul;304:277–296. doi: 10.1113/jphysiol.1980.sp013324. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Casteels R., Raeymaekers L. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J Physiol. 1979 Sep;294:51–68. doi: 10.1113/jphysiol.1979.sp012914. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Collis M. G., Shepherd J. T. Isoproterenol-induced relaxation of venous smooth muscle contracted by agents which mobilize different calcium pools. J Pharmacol Exp Ther. 1979 Jun;209(3):359–365. [PubMed] [Google Scholar]
  6. Deth R., van Breemen C. Relative contributions of Ca2+ influx and cellular Ca2+ release during drug induced activation of the rabbit aorta. Pflugers Arch. 1974 Apr 4;348(1):13–22. doi: 10.1007/BF00587735. [DOI] [PubMed] [Google Scholar]
  7. Diamond J. Role of cyclic nucleotides in control of smooth muscle contraction. Adv Cyclic Nucleotide Res. 1978;9:327–340. [PubMed] [Google Scholar]
  8. Dorevitch N. Effect of isoproterenol on adrenergic receptors in rabbit thoracic aorta. Arch Int Pharmacodyn Ther. 1968 Jul;174(1):98–107. [PubMed] [Google Scholar]
  9. Johansson B., Johsson O., Axelsson J., Wahlström B. Electrical and mechanical characteristics of vascular smooth muscle response to norepinephrine and isoproterenol. Circ Res. 1967 Nov;21(5):619–633. doi: 10.1161/01.res.21.5.619. [DOI] [PubMed] [Google Scholar]
  10. Kroeger E. A., Marshall J. M., Bianchi C. P. Effect of isoproterenol and D-600 on calcium movements in rat myometrium. J Pharmacol Exp Ther. 1975 May;193(2):309–316. [PubMed] [Google Scholar]
  11. Marshall J. M., Kroeger E. A. Adrenergic influences on uterine smooth muscle. Philos Trans R Soc Lond B Biol Sci. 1973 Mar 15;265(867):135–148. doi: 10.1098/rstb.1973.0016. [DOI] [PubMed] [Google Scholar]
  12. Marshall J. M. Modulation of smooth muscle activity by catecholamines. Fed Proc. 1977 Sep;36(10):2450–2455. [PubMed] [Google Scholar]
  13. Meisheri K. D., Hwang O., van Breemen C. Evidence for two separated Ca2+ pathways in smooth muscle plasmalemma. J Membr Biol. 1981 Mar 15;59(1):19–25. doi: 10.1007/BF01870817. [DOI] [PubMed] [Google Scholar]
  14. Meisheri K. D., McNeill J. H., Marshall J. M. Effect of isoproterenol on the isolated pregnant rat myometrium. Eur J Pharmacol. 1979 Nov 23;60(1):1–6. doi: 10.1016/0014-2999(79)90045-1. [DOI] [PubMed] [Google Scholar]
  15. Meisheri K. D., McNeill J. H. Role of Ca in isoproterenol-induced increases in cAMP levels in rat uterus. Am J Physiol. 1979 Nov;237(5):C257–C263. doi: 10.1152/ajpcell.1979.237.5.C257. [DOI] [PubMed] [Google Scholar]
  16. Meisheri K. D., Palmer R. F., Van Breemen C. The effects of amrinone on contractility, Ca2+ uptake and cAMP in smooth muscle. Eur J Pharmacol. 1980 Jan 25;61(2):159–165. doi: 10.1016/0014-2999(80)90158-2. [DOI] [PubMed] [Google Scholar]
  17. Mueller E., van Breemen C. Role of intracellular Ca2+ sequestration in beta-adrenergic relaxation of a smooth muscle. Nature. 1979 Oct 25;281(5733):682–683. doi: 10.1038/281682a0. [DOI] [PubMed] [Google Scholar]
  18. Scheid C. R., Honeyman T. W., Fay F. S. Mechanism of beta-adrenergic relaxation of smooth muscle. Nature. 1979 Jan 4;277(5691):32–36. doi: 10.1038/277032a0. [DOI] [PubMed] [Google Scholar]
  19. Somlyo A. V., Somlyo A. P. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J Pharmacol Exp Ther. 1968 Jan;159(1):129–145. [PubMed] [Google Scholar]
  20. Sutherland E. W., Robison G. A. The role of cyclic-3',5'-AMP in responses to catecholamines and other hormones. Pharmacol Rev. 1966 Mar;18(1):145–161. [PubMed] [Google Scholar]
  21. Tomiyama A., Takayanagi I., Takagi K. Relaxation of intestinal smooth muscle and calcium movements. J Pharm Pharmacol. 1973 Jan;25(1):65–68. doi: 10.1111/j.2042-7158.1973.tb09117.x. [DOI] [PubMed] [Google Scholar]
  22. Van Breemen C. Calcium requirement for activation of intact aortic smooth muscle. J Physiol. 1977 Nov;272(2):317–329. doi: 10.1113/jphysiol.1977.sp012046. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Van Breemen C., Wuytack F., Casteels R., Martinelli B., Campailla E., Ferrari G. Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization. Pflugers Arch. 1975 Sep 9;359(3):183–196. doi: 10.1007/BF00587378. [DOI] [PubMed] [Google Scholar]
  24. Webb R. C., Bohr D. F. Relaxation of vascular smooth muscle by isoproterenol, dibutyryl-cyclic AMP and theophylline. J Pharmacol Exp Ther. 1981 Apr;217(1):26–35. [PubMed] [Google Scholar]
  25. van Breemen C., Aaronson P., Loutzenhiser R., Meisheri K. Ca2+ movements in smooth muscle. Chest. 1980 Jul;78(1 Suppl):157–165. doi: 10.1378/chest.78.1_supplement.157. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES