Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1982 Oct;331:567–576. doi: 10.1113/jphysiol.1982.sp014392

Comparative effects of external monovalent cations on sodium pump activity and ouabain inhibition rates in squid giant axon.

A S Hobbs
PMCID: PMC1197769  PMID: 6296370

Abstract

1. A number of external monovalent cations were compared with regard to their effects on Na pump rate and the rate of ouabain inhibition of the pump in squid giant axon. 2. External ions which stimulate active Na efflux (K, Rb, and Cs) were found to decrease the rate at which low concentrations of ouabain inhibit the pump, and those ions which inhibit the pump externally (Na and Li) to increase the rate of inhibition. 3. In Na- and Li-containing solutions, pump rate appeared to be the major factor in determining the rate of ouabain inhibition regardless of whether K, Cs, or Rb was used to stimulate active Na efflux. 4. When choline was substituted for external Na, ouabain inhibition rates were more than twice as rapid when Cs was used as the pump-stimulating cation than when K was activating the pump to a similar level. 5. These results suggest that external monovalent cations modulate ouabain inhibition in squid axon at two classes of sites: pump activation sites, and also separate regulatory sites, whose occupation can significantly increase the rate of ouabain inhibition independent of pump turnover rate.

Full text

PDF
567

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Albers R. W., Koval G. J., Siegel Studies on the interaction of ouabain and other cardio-active steroids with sodium-potassium-activated adenosine triphosphatase. Mol Pharmacol. 1968 Jul;4(4):324–336. [PubMed] [Google Scholar]
  2. Albers R. W., Koval G. J. Sodium-potassium-activated adenosine triphosphatase of Electrophorus electric organ. 3. An associated potassium-activated neutral phosphatase. J Biol Chem. 1966 Apr 25;241(8):1896–1898. [PubMed] [Google Scholar]
  3. BRINLEY F. J., Jr, MULLINS L. J. ION FLUXES AND TRANSFERENCE NUMBER IN SQUID AXONS. J Neurophysiol. 1965 May;28:526–544. doi: 10.1152/jn.1965.28.3.526. [DOI] [PubMed] [Google Scholar]
  4. Baker P. F., Blaustein M. P., Keynes R. D., Manil J., Shaw T. I., Steinhardt R. A. The ouabain-sensitive fluxes of sodium and potassium in squid giant axons. J Physiol. 1969 Feb;200(2):459–496. doi: 10.1113/jphysiol.1969.sp008703. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Baker P. F., Manil J. The rates of action of K+ and ouabain on the sodium pump in squid axons. Biochim Biophys Acta. 1968 Mar 1;150(2):328–330. doi: 10.1016/0005-2736(68)90181-8. [DOI] [PubMed] [Google Scholar]
  6. Baker P. F., Willis J. S. Inhibition of the sodium pump in squid giant axons by cardiac glycosides: dependence on extracellular ions and metabolism. J Physiol. 1972 Jul;224(2):463–475. doi: 10.1113/jphysiol.1972.sp009905. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Beaugé L. The interaction of lithium ions with the sodium-potassium pump in frog skeletal muscle. J Physiol. 1975 Mar;246(2):397–420. doi: 10.1113/jphysiol.1975.sp010896. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bodemann H. H., Hoffman J. F. Side-dependent effects of internal versus external Na and K on ouabain binding to reconstituted human red blood cell ghosts. J Gen Physiol. 1976 May;67(5):497–525. doi: 10.1085/jgp.67.5.497. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Brinley F. J., Jr, Mullins L. J. Sodium fluxes in internally dialyzed squid axons. J Gen Physiol. 1968 Aug;52(2):181–211. doi: 10.1085/jgp.52.2.181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. De Weer P. Effects of intracellular adenosine-5'-diphosphate and orthophosphate on the sensitivity of sodium efflux from squid axon to external sodium and potassium. J Gen Physiol. 1970 Nov;56(5):583–620. doi: 10.1085/jgp.56.5.583. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. GLYNN I. M. The action of cardiac glycosides on sodium and potassium movements in human red cells. J Physiol. 1957 Apr 3;136(1):148–173. doi: 10.1113/jphysiol.1957.sp005749. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Gardner J. D., Conlon T. P. The effects of sodium and potassium on ouabain binding by human erythrocytes. J Gen Physiol. 1972 Nov;60(5):609–629. doi: 10.1085/jgp.60.5.609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. HODGKIN A. L., KEYNES R. D. Experiments on the injection of substances into squid giant axons by means of a microsyringe. J Physiol. 1956 Mar 28;131(3):592–616. doi: 10.1113/jphysiol.1956.sp005485. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Hobbs A. S., Dunham P. B. Interaction of external alkali metal ions with the Na-K pump of human erythrocytes: a comparison of their effects on activation of the pump and on the rate of ouabain binding. J Gen Physiol. 1978 Sep;72(3):381–402. doi: 10.1085/jgp.72.3.381. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Joiner C. H., Lauf P. K. Modulation of ouabain binding and potassium pump fluxes by cellular sodium and potassium in human and sheep erythrocytes. J Physiol. 1978 Oct;283:177–196. doi: 10.1113/jphysiol.1978.sp012495. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Knott G. D. Mlab--a mathematical modeling tool. Comput Programs Biomed. 1979 Dec;10(3):271–280. doi: 10.1016/0010-468x(79)90075-8. [DOI] [PubMed] [Google Scholar]
  17. Livengood D. R., Kusano K. Evidence for an electrogenic sodium pump in follower cells of the lobster cardiac ganglion. J Neurophysiol. 1972 Mar;35(2):170–186. doi: 10.1152/jn.1972.35.2.170. [DOI] [PubMed] [Google Scholar]
  18. Mullins L. J., Brinley F. J., Jr Some factors influencing sodium extrusion by internally dialyzed squid axons. J Gen Physiol. 1967 Nov;50(10):2333–2355. doi: 10.1085/jgp.50.10.2333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Post R. L., Hegyvary C., Kume S. Activation by adenosine triphosphate in the phosphorylation kinetics of sodium and potassium ion transport adenosine triphosphatase. J Biol Chem. 1972 Oct 25;247(20):6530–6540. [PubMed] [Google Scholar]
  20. Sachs J. R. Interaction of external K, Na, and cardioactive steroids with the Na-K pump of the human red blood cell. J Gen Physiol. 1974 Feb;63(2):123–143. doi: 10.1085/jgp.63.2.123. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Sachs J. R., Welt L. G. The concentration dependence of active potassium transport in the human red blood cell. J Clin Invest. 1967 Jan;46(1):65–76. doi: 10.1172/JCI105512. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Sjodin R. A., Beauge L. A. The influence of potassium- and sodium-free solutions on sodium efflux from squid giant axons. J Gen Physiol. 1969 Nov;54(5):664–674. doi: 10.1085/jgp.54.5.664. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Sjodin R. A., Beaugé L. A. Coupling and selectivity of sodium and potassium transport in squid giant axons. J Gen Physiol. 1968 May;51(5 Suppl):152S+–152S+. [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES