Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Oct;105(1):213–223. doi: 10.1042/bj1050213

Esterification of glycerol 3-phosphate in lactating guinea-pig mammary gland

N J Kuhn 1,*
PMCID: PMC1198292  PMID: 6070127

Abstract

1. The presence of palmitoyl-CoA–l-glycerol 3-phosphate palmitoyltransferase (EC 2.3.1.15) has been demonstrated in a particulate fraction of mammary tissue from lactating guinea pigs. 2. Cell-free preparations also catalysed the activation of palmitate and oleate, and the conversion of enzymically formed phosphatidic acid into glycerides, in accord with the Kennedy pathway of glyceride formation. 3. The properties of the system that esterifies l-glycerol 3-phosphate were studied with respect to substrates and cofactors, and the reaction product was shown to be phosphatidic acid (1,2-diacyl glycerol 3-phosphate). 4. The extent to which newly formed phosphatidic acid was converted into glyceride in a cell-free system was dependent on the nature of the acyl donor, the concentration of subcellular particles, the time of incubation and the concentration of Mg2+.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BERTHET J., DE DUVE C. Tissue fractionation studies. I. The existence of a mitochondria-linked, enzymically inactive form of acid phosphatase in rat-liver tissue. Biochem J. 1951 Dec;50(2):174–181. doi: 10.1042/bj0500174. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. COLEMAN R., HUEBSCHER G. Metabolism of phospholipids. V. Studies of phosphatidic acid phosphatase. Biochim Biophys Acta. 1962 Jan 29;56:479–490. doi: 10.1016/0006-3002(62)90600-5. [DOI] [PubMed] [Google Scholar]
  3. ELLMAN G. L. Tissue sulfhydryl groups. Arch Biochem Biophys. 1959 May;82(1):70–77. doi: 10.1016/0003-9861(59)90090-6. [DOI] [PubMed] [Google Scholar]
  4. FOLCH J., LEES M., SLOANE STANLEY G. H. A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem. 1957 May;226(1):497–509. [PubMed] [Google Scholar]
  5. HANES C. S., ISHERWOOD F. A. Separation of the phosphoric esters on the filter paper chromatogram. Nature. 1949 Dec 31;164(4183):1107-12, illust. doi: 10.1038/1641107a0. [DOI] [PubMed] [Google Scholar]
  6. HOKIN M. R., HOKIN L. E. The synthesis of phosphatidic acid from diglyceride and adenosine triphosphate in extracts of brain microsomes. J Biol Chem. 1959 Jun;234(6):1381–1386. [PubMed] [Google Scholar]
  7. KENNEDY E. P. Biosynthesis of complex lipids. Fed Proc. 1961 Dec;20:934–940. [PubMed] [Google Scholar]
  8. KORNBERG A., PRICER W. E., Jr Enzymatic esterification of alpha-glycerophosphate by long chain fatty acids. J Biol Chem. 1953 Sep;204(1):345–357. [PubMed] [Google Scholar]
  9. KUHN N. J., LYNEN F. PHOSPHATIDIC ACID SYNTHESIS IN YEAST. Biochem J. 1965 Jan;94:240–246. doi: 10.1042/bj0940240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Kuhn N. J. Regulation of triglyceride synthesis in the parturient guinea-pig mammary gland. Biochem J. 1967 Oct;105(1):225–231. doi: 10.1042/bj1050225. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. LANDS W. E., MERKL I. Metabolism of glycerolipids. III. Reactivity of various acyl esters of coenzyme A with alpha'-acylglycerophosphorylcholine, and positional specificities in lecithin synthesis. J Biol Chem. 1963 Mar;238:898–904. [PubMed] [Google Scholar]
  12. McBride O. W., Korn E. D. Acceptors of fatty acid for glyceride synthesis in guinea pig mammary gland. J Lipid Res. 1964 Jul;5(3):448–452. [PubMed] [Google Scholar]
  13. PANGBORN M. C. A simplified purification of lecithin. J Biol Chem. 1951 Feb;188(2):471–476. [PubMed] [Google Scholar]
  14. PYNADATH T. I., KUMAR S. INCORPORATION OF SHORT- AND LONG-CHAIN FATTY ACIDS INTO GLYCERIDES BY LACTATING-GOAT MAMMARY TISSUE. Biochim Biophys Acta. 1964 Jun 15;84:251–263. doi: 10.1016/0926-6542(64)90054-x. [DOI] [PubMed] [Google Scholar]
  15. SENIOR J. R. INTESTINAL ABSORPTION OF FATS. J Lipid Res. 1964 Oct;5:495–521. [PubMed] [Google Scholar]
  16. SMITH S. W., WEISS S. B., KENNEDY E. P. The enzymatic dephosphorylation of phosphatidic acids. J Biol Chem. 1957 Oct;228(2):915–922. [PubMed] [Google Scholar]
  17. SRERE P. A., SEUBERT W., LYNEN F. Palmityl coenzyme A deacylase. Biochim Biophys Acta. 1959 Jun;33(2):313–319. doi: 10.1016/0006-3002(59)90118-0. [DOI] [PubMed] [Google Scholar]
  18. STANSLY P. G. Estimation of the enzymic condensation of alpha-glycerophosphate and palmityl coenzyme A. Biochim Biophys Acta. 1955 Nov;18(3):411–415. doi: 10.1016/0006-3002(55)90105-0. [DOI] [PubMed] [Google Scholar]
  19. STERN I., SHAPIRO B. A rapid and simple method for the determination of esterified fatty acids and for total fatty acids in blood. J Clin Pathol. 1953 May;6(2):158–160. doi: 10.1136/jcp.6.2.158. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Taketa K., Pogell B. M. The effect of palmityl coenzyme A on glucose 6-phosphate dehydrogenase and other enzymes. J Biol Chem. 1966 Feb 10;241(3):720–726. [PubMed] [Google Scholar]
  21. VIGNAIS P. V., ZABIN I. Synthesis and properties of palmityl adenylate, palmityl coenzyme A, and palmityl glutathione. Biochim Biophys Acta. 1958 Aug;29(2):263–269. doi: 10.1016/0006-3002(58)90183-5. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES