Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1967 Nov;105(2):685–690. doi: 10.1042/bj1050685

Effect of mercurial compounds on structure-linked latency of lysosomal hydrolases

M Anthony Verity 1, A Reith 1
PMCID: PMC1198364  PMID: 4296323

Abstract

1. A partially purified lysosomal preparation was obtained from adult mouse livers by sucrose-density-gradient centrifugation of a large-granule fraction. 2. This lysosome-enriched subfraction was contaminated approx. 10% by mitochondrial cytochrome c oxidase and malate dehydrogenase. 3. Free acid phosphohydrolase and β-glucuronidase contributed less than 10% of the total (Triton X-100-solubilized) activity in contrast with approx. 30% free N-acetyl-β-d-glucosaminidase when assayed in an iso-osmotic incubation system. 4. Exposure of the lysosomal preparation to inorganic Hg2+ ions and organic mercurials (p-chloromercuribenzoate, phenylmercuric acetate) induced an irreversible loss of structure-linked latency with resulting enzyme activation. 5. Maximal activation was related to log [Hg2+] and pH. The response was all-or-none for individual particles; the dose–response curve portrayed the variation in particle resistance within the lysosomal population. 6. l-Cysteine and GSH totally prevented Hg2+ ion-induced hydrolase activation. Ascorbate provided approx. 50% protection. 7. The three lysosomal hydrolases were differentially activated at constant [Hg2+], suggesting a different pattern of binding, unique for each enzyme studied.

Full text

PDF
685

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BEAUFAY H., VAN CAMPENHOUT E., DE DUVE C. Tissue fractionation studies. II. Influence of various hepatotoxic treatments on the state of some bound enzymes in rat liver. Biochem J. 1959 Dec;73:617–623. doi: 10.1042/bj0730617. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BENDALL D. S., DE DUVE C. Tissue-fractionation studies. 14. The activation of latent dehydrogenases in mitochondria from rat liver. Biochem J. 1960 Mar;74:444–450. doi: 10.1042/bj0740444. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. COHN Z. A., HIRSCH J. G. The isolation and properties of the specific cytoplasmic granules of rabbit polymorphonuclear leucocytes. J Exp Med. 1960 Dec 1;112:983–1004. doi: 10.1084/jem.112.6.983. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. COOPERSTEIN S. J., LAZAROW A. A microspectrophotometric method for the determination of cytochrome oxidase. J Biol Chem. 1951 Apr;189(2):665–670. [PubMed] [Google Scholar]
  5. Clarkson T. W., Magos L. Studies on the binding of mercury in tissue homogenates. Biochem J. 1966 Apr;99(1):62–70. doi: 10.1042/bj0990062. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. DE DUVE C., BERTHET J. Reproducibility of differential centrifugation experiments in tissue fractionation. Nature. 1953 Dec 19;172(4390):1142–1142. doi: 10.1038/1721142a0. [DOI] [PubMed] [Google Scholar]
  7. DE DUVE C., PRESSMAN B. C., GIANETTO R., WATTIAUX R., APPELMANS F. Tissue fractionation studies. 6. Intracellular distribution patterns of enzymes in rat-liver tissue. Biochem J. 1955 Aug;60(4):604–617. doi: 10.1042/bj0600604. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. DE DUVE C., WATTIAUX R. Tissue fractionation studies. VII. Release of bound hydrolases by means of triton X-100. Biochem J. 1956 Aug;63(4):606–608. doi: 10.1042/bj0630606. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. DEMIS D. J., ROTHSTEIN A. Relationship of the cell surface to metabolism. XII. Effect of mercury and copper on glucose uptake and respiration of rat diaphragm. Am J Physiol. 1955 Mar;180(3):566–574. doi: 10.1152/ajplegacy.1955.180.3.566. [DOI] [PubMed] [Google Scholar]
  10. GAMBLE J. L., Jr Potassium binding and oxidative phosphorylation in mitochondria and mitochondrial fragments. J Biol Chem. 1957 Oct;228(2):955–971. [PubMed] [Google Scholar]
  11. GURD F. R., WILCOX P. E. Complex formation between metallic cations and proteins, peptides and amino acids. Adv Protein Chem. 1956;11:311–427. doi: 10.1016/s0065-3233(08)60424-6. [DOI] [PubMed] [Google Scholar]
  12. JACOB H. S., JANDL J. H. Effects of sulfhydryl inhibition on red blood cells. I. Mechanism of hemolysis. J Clin Invest. 1962 Apr;41:779–792. doi: 10.1172/JCI104536. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. JOYCE C. R., MOORE H., WEATHERALL M. The effects of lead, mercury, and gold on the potassium turnover of rabbit blood cells. Br J Pharmacol Chemother. 1954 Dec;9(4):463–470. doi: 10.1111/j.1476-5381.1954.tb00862.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KAPLAN J. G. THE REVERSION OF CATALASE DURING GROWTH OF YEAST IN ANAEROBIOSIS. J Gen Physiol. 1963 Sep;47:103–115. doi: 10.1085/jgp.47.1.103. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. Kaplan J. G., Tacreiter W. The beta-glucosidase of the yeast cell surface. J Gen Physiol. 1966 Sep;50(1):9–24. doi: 10.1085/jgp.50.1.9. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. LEHNINGER A. L. Water uptake and extrusion by mitochondria in relation to oxidative phosphorylation. Physiol Rev. 1962 Jul;42:467–517. doi: 10.1152/physrev.1962.42.3.467. [DOI] [PubMed] [Google Scholar]
  17. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  18. MACDONALD K. The hydrolysis of phenyl phosphate by mouse-liver acid phosphatase. Biochem J. 1961 Jul;80:154–161. doi: 10.1042/bj0800154. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. OBATA Y., ISHIKAWA Y. RADIOISOTOPE INVESTIGATION OF THE EFFECT OF SUNLIGHT ON BEER. Nature. 1965 Jan 2;205:75–75. doi: 10.1038/205075a0. [DOI] [PubMed] [Google Scholar]
  20. PASSOW H., ROTHSTEIN A., CLARKSON T. W. The general pharmacology of the heavy metals. Pharmacol Rev. 1961 Jun;13:185–224. [PubMed] [Google Scholar]
  21. RAHMAN Y. E. A NOTE ON ACID PHOSPHATASE RELEASE FROM SPLEEN, LIVER AND THYMUS OF RATS. Biochim Biophys Acta. 1964 Aug 19;90:440–442. doi: 10.1016/0304-4165(64)90221-1. [DOI] [PubMed] [Google Scholar]
  22. RILEY M. V., LEHNINGER A. L. CHANGES IN SULFHYDRYL GROUPS OF RAT LIVER MITOCHONDRIA DURING SWELLING AND CONTRACTION. J Biol Chem. 1964 Jun;239:2083–2089. [PubMed] [Google Scholar]
  23. SCOTT R. L., GAMBLE J. L., Jr Effect of mercurial compounds on potassium binding by mitochondria. J Biol Chem. 1961 Feb;236:570–573. [PubMed] [Google Scholar]
  24. SHIBKO S., TAPPEL A. L. RAT-KIDNEY LYSOSOMES: ISOLATION AND PROPERTIES. Biochem J. 1965 Jun;95:731–741. doi: 10.1042/bj0950731. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. Shibko S., Pangborn J., Tappel A. L. Studies on the release of lysosomal enzymes from kidney lysosomes. J Cell Biol. 1965 Jun;25(3):479–483. doi: 10.1083/jcb.25.3.479. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. TSUBOI K. K., HUDSON P. B. Acid phosphatase. III. Specific kinetic properties of highly purified human prostatic phosphomonoesterase. Arch Biochem Biophys. 1955 Mar;55(1):191–205. doi: 10.1016/0003-9861(55)90557-9. [DOI] [PubMed] [Google Scholar]
  27. VERITY M. A., CAPER R., BROWN W. J. SPECTROFLUOROMETRIC DETERMINATION OF BETA-GLUCURONIDASE ACTIVITY. Arch Biochem Biophys. 1964 Jul 20;106:386–393. doi: 10.1016/0003-9861(64)90205-x. [DOI] [PubMed] [Google Scholar]
  28. Vaes G. Studies on bone enzymes. The activation and release of latent acid hydrolases and catalase in bone-tissue homogenates. Biochem J. 1965 Nov;97(2):393–402. doi: 10.1042/bj0970393. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Verity M. A., Gambell J. K., Brown W. J. Fluorometric determination of N-acetyl-beta-D-glucosaminidase activity. Arch Biochem Biophys. 1967 Feb;118(2):310–316. doi: 10.1016/0003-9861(67)90354-2. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES