Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Jan;106(1):211–227. doi: 10.1042/bj1060211

The utilization of some halogenated aromatic acids by Nocardia. Oxidation and metabolism

R B Cain 1, E Karen Tranter 1, Josephine A Darrah 1
PMCID: PMC1198488  PMID: 5721459

Abstract

1. Halogen analogues of p-nitrobenzoate and benzoate were oxidized by washed cells of Nocardia erythropolis. 2. The oxidation of 2-fluoro-4-nitrobenzoate ceased at the level of acetate, and fluoroacetate was found in the incubation medium and particularly in hot-ethanolic extracts of the cells. 3. Several fluorine-containing intermediates were detected and 2-fluoroprotocatechuate was identified as one of them. 4. The nitro group was also reduced by the organism, as evidenced by the formation of 4-amino-2-fluorobenzoate. 5. Extracts of N. erythropolis activated fluoroacetate and condensed the resulting fluoroacetyl-CoA with oxaloacetate to form fluorocitrate. This product was a very powerful inhibitor of citrate metabolism by guinea-pig kidney homogenates and of the aconitase also present in the bacterial extracts. The inhibitions effected by synthetic fluorocitrate and the natural product were comparable. 6. 2-Fluoro-4-nitrobenzoate had negligible mammalian toxicity. 7. The isolation of fluoroacetate as a product of 2-fluoro-4-nitrobenzoate oxidation implies that the aromatic ring in this bacterium must be degraded via a γ-carboxymuconolactone; fluoroacetate cannot arise by metabolism through the isomeric β-carboxymuconolactone.

Full text

PDF
211

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. ALDOUS J. G. The nature of the metabolites of fluoroacetic acid in bakers' yeast. Biochem Pharmacol. 1963 Jul;12:627–632. doi: 10.1016/0006-2952(63)90037-6. [DOI] [PubMed] [Google Scholar]
  2. BEHRMAN E. J., STANIER R. Y. Observations on the oxidation of halogenated nicotinic acids. J Biol Chem. 1957 Oct;228(2):947–953. [PubMed] [Google Scholar]
  3. BERGMANN F., SEGAL R. The separation and determination of microquantities of lower aliphatic acids, including fluoroacetic acid. Biochem J. 1956 Apr;62(4):542–546. doi: 10.1042/bj0620542. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. CAIN R. B., CARTWRIGHT N. J. On the properties of some aromatic ring-opening enzymes of species of the genus Nocardia. Biochim Biophys Acta. 1960 Jan 15;37:197–213. doi: 10.1016/0006-3002(60)90225-0. [DOI] [PubMed] [Google Scholar]
  5. CAIN R. B. The microbial metabolism of nitro-aromatic compounds. J Gen Microbiol. 1958 Aug;19(1):1–14. doi: 10.1099/00221287-19-1-1. [DOI] [PubMed] [Google Scholar]
  6. CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. 2. Reduction of the nitro group. Biochem J. 1959 Oct;73:305–314. doi: 10.1042/bj0730305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. CARTWRIGHT N. J., CAIN R. B. Bacterial degradation of the nitrobenzoic acids. Biochem J. 1959 Feb;71(2):248–261. doi: 10.1042/bj0710248. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. ELLS H. A. A colorimetric method for the assay of soluble succinic dehydrogenase and pyridinenucleotide-linked dehydrogenases. Arch Biochem Biophys. 1959 Dec;85:561–562. doi: 10.1016/0003-9861(59)90527-2. [DOI] [PubMed] [Google Scholar]
  9. Evans W. C. Oxidation of phenol and benzoic acid by some soil bacteria. Biochem J. 1947;41(3):373–382. doi: 10.1042/bj0410373. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. GROSS S. R., GAFFORD R. D., TATUM E. L. The metabolism of protocatechuic acid by Neurospora. J Biol Chem. 1956 Apr;219(2):781–796. [PubMed] [Google Scholar]
  11. HUGHES D. E. A press for disrupting bacteria and other micro-organisms. Br J Exp Pathol. 1951 Apr;32(2):97–109. [PMC free article] [PubMed] [Google Scholar]
  12. HUGHES D. E. THE METABOLISM OF HALOGEN-SUBSTITUTED BENZOIC ACIDS BY PSEUDOMONAS FLUORESCENS. Biochem J. 1965 Jul;96:181–188. doi: 10.1042/bj0960181. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. IACCARINO M., BOERI E., SCARDI V. Preparation of purified 3-hydroxyanthranilic acid oxidase from rat and ox liver. Biochem J. 1961 Jan;78:65–69. doi: 10.1042/bj0780065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KATAGIRI M., HAYAISHI O. Enzymatic degradation of beta-ketoadipic acid. J Biol Chem. 1957 May;226(1):439–448. [PubMed] [Google Scholar]
  15. MACDONALD D. L., STANIER R. Y., INGRAHAM J. L. The enzymatic formation of beta-carboxymuconic acid. J Biol Chem. 1954 Oct;210(2):809–820. [PubMed] [Google Scholar]
  16. MARCUS A., ELLIOTT W. B. Enzymatic reactions of fluoroacetate and fluoroacetyl coenzyme A. J Biol Chem. 1956 Feb;218(2):823–830. [PubMed] [Google Scholar]
  17. MARCUS A., ELLIOTT W. B. Enzymatic reactions of fluoroacetyl phosphate. J Biol Chem. 1959 May;234(5):1011–1014. [PubMed] [Google Scholar]
  18. Ornston L. N., Stanier R. Y. The conversion of catechol and protocatechuate to beta-ketoadipate by Pseudomonas putida. J Biol Chem. 1966 Aug 25;241(16):3776–3786. [PubMed] [Google Scholar]
  19. PETERS R. A. Lethal synthesis. Proc R Soc Lond B Biol Sci. 1952 Feb 28;139(895):143–170. doi: 10.1098/rspb.1952.0001. [DOI] [PubMed] [Google Scholar]
  20. PETERS R., WAKELIN R. W. Biochemistry of fluoroacetate poisoning; the isolation and some properties of the fluorotricarboxylic acid inhibitor of citrate metabolism. Proc R Soc Lond B Biol Sci. 1953 Jan 15;140(901):497–507. doi: 10.1098/rspb.1953.0004. [DOI] [PubMed] [Google Scholar]
  21. Polakis E. S., Bartley W. Changes in the enzyme activities of Saccharomyces cerevisiae during aerobic growth on different carbon sources. Biochem J. 1965 Oct;97(1):284–297. doi: 10.1042/bj0970284. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Rothera A. C. Note on the sodium nitro-prusside reaction for acetone. J Physiol. 1908 Dec 15;37(5-6):491–494. doi: 10.1113/jphysiol.1908.sp001285. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. SISTROM W. R., STANIER R. Y. The mechanism of catechol oxidation by Mycobacterium butyricum. J Bacteriol. 1953 Oct;66(4):404–406. doi: 10.1128/jb.66.4.404-406.1953. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. SISTROM W. R., STANIER R. Y. The mechanism of formation of beta-ketoadipic acid by bacteria. J Biol Chem. 1954 Oct;210(2):821–836. [PubMed] [Google Scholar]
  25. STERN J. R., OCHOA S., LYNEN F. Enzymatic synthesis of citric acid. V. Reaction of acetyl coenzyme A. J Biol Chem. 1952 Sep;198(1):313–321. [PubMed] [Google Scholar]
  26. Smith A., Tranter E. K., Cain R. B. The utilization of some halogenated aromatic acids by Nocardia. Effects on growth and enzyme induction. Biochem J. 1968 Jan;106(1):203–209. doi: 10.1042/bj1060203. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. TAYLOR T. G. A modified procedure for the microdetermination of citric acid. Biochem J. 1953 Apr;54(1):48–49. doi: 10.1042/bj0540048. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES