Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Jan;106(2):507–514. doi: 10.1042/bj1060507

Degradation of phenylalanine and tyrosine by Sporobolomyces roseus

Keith Moore 1,*, P V Subba Rao 1, G H N Towers 1
PMCID: PMC1198531  PMID: 5688927

Abstract

Ammonia-lyase activity for l-phenylalanine, m-hydroxyphenylalanine and l-tyrosine was demonstrated in cell-free extracts of Sporobolomyces roseus. Cultures of this organism converted dl-[ring-14C]phenylalanine and l-[U-14C]tyrosine into the corresponding cinnamic acid. Tracer studies showed that these compounds were further metabolized to [14C]protocatechuic acid. Benzoic acid and p-hydroxybenzoic acid were intermediates in this pathway. Washed cells of the organism readily utilized cinnamic acid, p-coumaric acid, caffeic acid, benzoic acid and p-hydroxybenzoic acid. Protocatechuic acid was the terminal aromatic compound formed during the metabolism of these compounds. The cells of S. roseus were able to convert m-coumaric acid into m-hydroxybenzoic acid, but the latter compound, which accumulated in the medium, was not further metabolized. 4-Hydroxycoumarin was identified as the product of o-coumaric acid metabolism by this organism.

Full text

PDF

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BLAKLEY E. R., SIMPSON F. J. THE MICROBIAL METABOLISM OF CINNAMIC ACID. Can J Microbiol. 1964 Apr;10:175–185. doi: 10.1139/m64-025. [DOI] [PubMed] [Google Scholar]
  2. Dagley S., Chapman P. J., Gibson D. T. The metabolism of beta-phenylpropionic acid by an Achromobacter. Biochem J. 1965 Dec;97(3):643–650. doi: 10.1042/bj0970643. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. EL-BAGOURY S., FLETCHER S., MORRISON R. B. Effect of chloramphenicol in maintaining the viability of Escherichia coli. Nature. 1956 Dec 29;178(4548):1467–1467. doi: 10.1038/1781467a0. [DOI] [PubMed] [Google Scholar]
  4. EVANS W. C. THE MICROBIOLOGICAL DEGRADATION OF AROMATIC COMPOUNDS. J Gen Microbiol. 1963 Aug;32:177–184. doi: 10.1099/00221287-32-2-177. [DOI] [PubMed] [Google Scholar]
  5. FINKLE B. J., LEWIS J. C., CORSE J. W., LUNDIN R. E. Enzyme reactions with phenolic compounds: formation of hydroxystyrenes through the decarboxylation of 4-hydroxycinnamic acids by Aerobacter. J Biol Chem. 1962 Sep;237:2926–2931. [PubMed] [Google Scholar]
  6. HENDERSON M. E., FARMER V. C. Utilization by soil fungi of p-hydroxybenzaidehyde, ferulic acid, syringaldehyde and vanillin. J Gen Microbiol. 1955 Feb;12(1):37–46. doi: 10.1099/00221287-12-1-37. [DOI] [PubMed] [Google Scholar]
  7. HENDERSON M. E. The metabolism of aromatic compounds related to lignin by some hyphomycetes and yeast-like fungi of soil. J Gen Microbiol. 1961 Sep;26:155–165. doi: 10.1099/00221287-26-1-155. [DOI] [PubMed] [Google Scholar]
  8. IBRAHIM R. K., TOWERS G. H. The identification, by chromatography, of plant phenolic acids. Arch Biochem Biophys. 1960 Mar;87:125–128. doi: 10.1016/0003-9861(60)90132-6. [DOI] [PubMed] [Google Scholar]
  9. KLUYVER A. J., VAN ZIJP J. C. The production of homogentisic acid out of phenylacetic acid by Aspergillus niger. Antonie Van Leeuwenhoek. 1951;17(5):315–324. doi: 10.1007/BF02062278. [DOI] [PubMed] [Google Scholar]
  10. KOUKOL J., CONN E. E. The metabolism of aromatic compounds in higher plants. IV. Purification and properties of the phenylalanine deaminase of Hordeum vulgare. J Biol Chem. 1961 Oct;236:2692–2698. [PubMed] [Google Scholar]
  11. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  12. MEAD J. A., SMITH J. N., WILLIAMS R. T. Studies in detoxication. 72. The metabolism of coumarin and of o-coumaric acid. Biochem J. 1958 Jan;68(1):67–74. doi: 10.1042/bj0680067. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. NAIR P. M., VAIDYANATHAN C. S. A COLORIMETRIC METHOD FOR DETERMINATION OF PYROCATECHOL AND RELATED SUBSTANCES. Anal Biochem. 1964 Mar;7:315–321. [PubMed] [Google Scholar]
  14. PITTARD A. J., GIBSON F., DOY C. H. A possible relationship between the formation of o-dihydric phenols and tryptophan biosynthesis by Aerobacter aerogens. Biochim Biophys Acta. 1962 Feb 26;57:290–298. doi: 10.1016/0006-3002(62)91122-8. [DOI] [PubMed] [Google Scholar]
  15. Power D. M., Towers G. H., Neish A. C. Biosynthesis of phenolic acids by certain wood-destroying basidiomycetes. Can J Biochem. 1965 Sep;43(9):1397–1407. doi: 10.1139/o65-157. [DOI] [PubMed] [Google Scholar]
  16. ROGOFF M. H. Oxidation of aromatic compounds by bacteria. Adv Appl Microbiol. 1961;3:193–221. doi: 10.1016/s0065-2164(08)70510-0. [DOI] [PubMed] [Google Scholar]
  17. Vollmer K. O., Reisener H. J., Grisebach H. The formation of acetic acid from p-hydroxycinnamic acid during its degradation to p-hydroxybenzoic acid in wheat shoots. Biochem Biophys Res Commun. 1965 Nov 8;21(3):221–225. doi: 10.1016/0006-291x(65)90275-5. [DOI] [PubMed] [Google Scholar]
  18. WEBLEY D. M., DUFF R. B., FARMER V. C. Beta-oxidation of fatty acids by Nocardia opaca. J Gen Microbiol. 1955 Oct;13(2):361–369. doi: 10.1099/00221287-13-2-361. [DOI] [PubMed] [Google Scholar]
  19. WEBLEY D. M., DUFF R. B., FARMER V. C. The influence of chemical structure on beta-oxidation by soil nocardias. J Gen Microbiol. 1958 Jun;18(3):733–746. doi: 10.1099/00221287-18-3-733. [DOI] [PubMed] [Google Scholar]
  20. WHITING G. C., CARR J. G. Metabolism of cinnamic acid and hydroxy-cinnamic acids by Lactobacillus pastorianus var. quinicus. Nature. 1959 Oct 31;184(Suppl 18):1427–1428. doi: 10.1038/1841427a0. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES