Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1968 Apr;107(3):387–393. doi: 10.1042/bj1070387

Fractionation of native and denatured transforming deoxyribonucleic acid from Bacillus subtilis

S R Ayad 1, G R Barker 1, Josephine Weigold 1
PMCID: PMC1198675  PMID: 4297046

Abstract

1. Native DNA from Bacillus subtilis was fractionated by stepwise elution from methylated albumin, the transforming activity being confined to two out of four fractions. Partial separation of DNA active in transformation for the arginine marker from that showing activity for the histidine and tryptophan markers was achieved. 2. Partial denaturation of DNA at 90° and 93·5° resulted in the preferential destruction of transforming activity for the histidine and tryptophan markers. 3. Denaturation of DNA at 100° followed by chromatography on methylated albumin yielded five fractions, two of which exhibited residual activity. Redenaturation at 100° resulted in the interconversion of four out of the five fractions. Redenaturation of fractions labelled with 15N and 2H suggested the presence of a specific component that did not readily take part in the interconversions.

Full text

PDF
387

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Fluke D., Drew R., Pollard E. Ionizing Particle Evidence for the Molecular Weight of the Pneumococcus Transforming Principle. Proc Natl Acad Sci U S A. 1952 Mar;38(3):180–187. doi: 10.1073/pnas.38.3.180. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. HAYASHI M. N., HAYASHI M., SPIEGELMAN S. CHROMATOGRAPHIC SEPARATION OF ANNEALED AND ENZYMATICALLY SYNTHESIZED RNA-DNA HYBRIDS. Biophys J. 1965 Mar;5:231–246. doi: 10.1016/s0006-3495(65)86713-3. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. MANDELL J. D., HERSHEY A. D. A fractionating column for analysis of nucleic acids. Anal Biochem. 1960 Jun;1:66–77. doi: 10.1016/0003-2697(60)90020-8. [DOI] [PubMed] [Google Scholar]
  4. MARMUR J., DOTY P. Thermal renaturation of deoxyribonucleic acids. J Mol Biol. 1961 Oct;3:585–594. doi: 10.1016/s0022-2836(61)80023-5. [DOI] [PubMed] [Google Scholar]
  5. MARMUR J., SCHILDKRAUT C. L. Growth of bacteria labelled with heavy isotopes for the isolation of nucleic acids. Nature. 1961 Feb 25;189:636–638. doi: 10.1038/189636a0. [DOI] [PubMed] [Google Scholar]
  6. Roger M., Beckmann C. O., Hotchkiss R. D. Separation of native and denatured fractions from partially denatured pneumococcal DNA. J Mol Biol. 1966 Jun;18(1):156–173. doi: 10.1016/s0022-2836(66)80083-9. [DOI] [PubMed] [Google Scholar]
  7. Rownd R. Physical chemistry of transforming deoxyribonucleic acid. Br Med Bull. 1965 Sep;21(3):187–194. doi: 10.1093/oxfordjournals.bmb.a070394. [DOI] [PubMed] [Google Scholar]
  8. SAITO H., MASAMUNE Y. FRACTIONATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID OF BACILLUS SUBTILIS WITH THE METHYLATED-ALBUMIN COLUMN. Biochim Biophys Acta. 1964 Oct 16;91:344–347. doi: 10.1016/0926-6550(64)90264-6. [DOI] [PubMed] [Google Scholar]
  9. SAITO H., MIURA K. I. PREPARATION OF TRANSFORMING DEOXYRIBONUCLEIC ACID BY PHENOL TREATMENT. Biochim Biophys Acta. 1963 Aug 20;72:619–629. [PubMed] [Google Scholar]
  10. SCHILDKRAUT C. L., MARMUR J., DOTY P. The formation of hybrid DNA molecules and their use in studies of DNA homologies. J Mol Biol. 1961 Oct;3:595–617. doi: 10.1016/s0022-2836(61)80024-7. [DOI] [PubMed] [Google Scholar]
  11. SUEOKA N., CHENG T. Y. Fractionation of nucleic acids with the methylated albumin column. J Mol Biol. 1962 Mar;4:161–172. doi: 10.1016/s0022-2836(62)80048-5. [DOI] [PubMed] [Google Scholar]
  12. Subirana J. A. Kinetics of renaturation of denatured DNA. II. Products of the reaction. Biopolymers. 1966;4(2):189–200. doi: 10.1002/bip.1966.360040205. [DOI] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES