Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Mar;336:563–577. doi: 10.1113/jphysiol.1983.sp014598

Effect of gamma-aminobutyric acid agonists, glycine, taurine and neuropeptides on acetylcholine release from the rabbit retina.

J R Cunningham, M J Neal
PMCID: PMC1198985  PMID: 6135799

Abstract

The light-evoked release of [3H]acetylcholine (ACh) from the rabbit retina in vivo was measured and taken as an index of cholinergic amacrine cell activity. The light-evoked release of [3H]ACh was reduced by locally applied gamma-aminobutyric acid (GABA), muscimol and 3-aminopropanesulphonic acid (3-APS). The concentrations of these drugs which reduced the light-evoked release of [3H]ACh by 50% (EC50) were 900, 0.3 and 5 microM respectively. In contrast, (-)-baclofen (5 mM), but not (+)-baclofen, significantly increased the light-evoked release of [3H]ACh. The GABA antagonist, bicuculline increased the resting release of [3H]ACh but abolished the inhibitory action of muscimol on the light-evoked release of [3H]ACh. Glycine and taurine also reduced the light-evoked release of [3H]ACh from the retina, their EC50 values being 1.5 and 0.3 mM respectively. This action was blocked by strychnine, but not by bicuculline. In contrast to the GABA antagonist, strychnine did not affect the spontaneous resting release of [3H]ACh. Retinal [3H]ACh release was not affected by dopamine, 5-hydroxytryptamine (5-HT) morphine, substance P, somatostatin, cholecystokinin sulphate, thyrotropin releasing hormone, luteinizing hormone releasing hormone or angiotensin. Electroretinographic changes produced by amino acids and GABA agonists involved mainly the b-wave and were not correlated with their effects on ACh release. Thus, GABA increased the b-wave amplitude, 3-APS had no effect, whilst muscimol, taurine and glycine either had no effect, or reduced the b-wave amplitude. No obvious changes in the e.r.g. were produced by baclofen, dopamine, 5-HT, morphine or any of the peptides studied with the exception of somatostatin, which reduced the amplitude of the b-wave. It is concluded that cholinergic amacrine cell activity in the rabbit retina may be affected by inputs from other amacrines using GABA or glycine (taurine) as their transmitters, but probably not by inputs from peptidergic or dopaminergic amacrine cells. Our experiments do not provide evidence on the sites of action of GABA, glycine or taurine but the action of bicuculline on the resting release of ACh implies that the activity of the cholinergic amacrine cells is affected by a tonically active GABAergic input.

Full text

PDF
563

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ames A., 3rd, Pollen D. A. Neurotransmission in central nervous tissue: a study of isolated rabbit retina. J Neurophysiol. 1969 May;32(3):424–442. doi: 10.1152/jn.1969.32.3.424. [DOI] [PubMed] [Google Scholar]
  2. Barlow H. B., Levick W. R. The mechanism of directionally selective units in rabbit's retina. J Physiol. 1965 Jun;178(3):477–504. doi: 10.1113/jphysiol.1965.sp007638. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Bonaventure N., Wioland N., Mandel P. Antagonists of the putative inhibitory transmitter effects of taurine and GABA in the retina. Brain Res. 1974 Nov 15;80(2):281–289. doi: 10.1016/0006-8993(74)90691-x. [DOI] [PubMed] [Google Scholar]
  4. Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J. Baclofen: a selective agonist for a novel type of GABA receptor proceedings. Br J Pharmacol. 1979 Nov;67(3):444P–445P. [PMC free article] [PubMed] [Google Scholar]
  5. Bowery N. G., Doble A., Hill D. R., Hudson A. L., Shaw J. S., Turnbull M. J., Warrington R. Bicuculline-insensitive GABA receptors on peripheral autonomic nerve terminals. Eur J Pharmacol. 1981 Apr 24;71(1):53–70. doi: 10.1016/0014-2999(81)90386-1. [DOI] [PubMed] [Google Scholar]
  6. Bowery N. G., Hill D. R., Hudson A. L., Doble A., Middlemiss D. N., Shaw J., Turnbull M. (-)Baclofen decreases neurotransmitter release in the mammalian CNS by an action at a novel GABA receptor. Nature. 1980 Jan 3;283(5742):92–94. doi: 10.1038/283092a0. [DOI] [PubMed] [Google Scholar]
  7. Caldwell J. H., Daw N. W., Wyatt H. J. Effects of picrotoxin and strychnine on rabbit retinal ganglion cells: lateral interactions for cells with more complex receptive fields. J Physiol. 1978 Mar;276:277–298. doi: 10.1113/jphysiol.1978.sp012233. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Cunningham R. A., Miller R. F. Electrophysiological analysis of taurine and glycine action on neurons of the mudpuppy retina. II. ERG, PNR and Müller cell recordings. Brain Res. 1980 Sep 15;197(1):139–151. doi: 10.1016/0006-8993(80)90440-0. [DOI] [PubMed] [Google Scholar]
  9. Cunningham R., Miller R. F. Electrophysiological analysis of taurine and glycine action on neurons of the midpuppy retina. I. Intracellular recording. Brain Res. 1980 Sep 15;197(1):123–138. doi: 10.1016/0006-8993(80)90439-4. [DOI] [PubMed] [Google Scholar]
  10. Cunningham R., Miller R. F. Taurine: its selective action on neuronal pathways in the rabbit retina. Brain Res. 1976 Nov 26;117(2):341–345. doi: 10.1016/0006-8993(76)90744-7. [DOI] [PubMed] [Google Scholar]
  11. Dubin M. W. The inner plexiform layer of the vertebrate retina: a quantitative and comparative electron microscopic analysis. J Comp Neurol. 1970 Dec;140(4):479–505. doi: 10.1002/cne.901400406. [DOI] [PubMed] [Google Scholar]
  12. Ehinger B., Falck B. Autoradiography of some suspected neurotransmitter substances: GABA glycine, glutamic acid, histamine, dopamine, and L-dopa. Brain Res. 1971 Oct 8;33(1):157–172. doi: 10.1016/0006-8993(71)90314-3. [DOI] [PubMed] [Google Scholar]
  13. Enna S. J., Snyder S. H. Gamma-aminobutyric acid (GABA) receptor binding in mammalian retina. Brain Res. 1976 Oct 8;115(1):174–179. doi: 10.1016/0006-8993(76)90834-9. [DOI] [PubMed] [Google Scholar]
  14. Florén I., Hansson H. C. Investigations into whether 5-hydroxytryptamine is a neurotransmitter in the retina of rabbit and chicken. Invest Ophthalmol Vis Sci. 1980 Feb;19(2):117–125. [PubMed] [Google Scholar]
  15. Hayden S. A., Mills J. W., Masland R. M. Acetylcholine synthesis by displaced amacrine cells. Science. 1980 Oct;210(4468):435–437. doi: 10.1126/science.7433984. [DOI] [PubMed] [Google Scholar]
  16. Karten H. J., Brecha N. Localisation of substance P immunoreactivity in amacrine cells of the retina. Nature. 1980 Jan 3;283(5742):87–88. doi: 10.1038/283087a0. [DOI] [PubMed] [Google Scholar]
  17. Kramer S. G. Dopamine: A retinal neurotransmitter. I. Retinal uptake, storage, and light-stimulated release of H3-dopamine in vivo. Invest Ophthalmol. 1971 Jun;10(6):438–452. [PubMed] [Google Scholar]
  18. Marc R. E., Stell W. K., Bok D., Lam D. M. GABA-ergic pathways in the goldfish retina. J Comp Neurol. 1978 Nov 15;182(2):221–244. doi: 10.1002/cne.901820204. [DOI] [PubMed] [Google Scholar]
  19. Marshall J., Voaden M. Autoradiographic identification of the cells accumulating 3H gamma-aminobutyric acid in mammalian retinae: a species comparison. Vision Res. 1975 Mar;15(3):459–461. doi: 10.1016/0042-6989(75)90102-9. [DOI] [PubMed] [Google Scholar]
  20. Masland R. H., Mills J. W. Autoradiographic identification of acetylcholine in the rabbit retina. J Cell Biol. 1979 Oct;83(1):159–178. doi: 10.1083/jcb.83.1.159. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Masland R. H., Mills J. W. Choline accumulation by photoreceptor cells of the rabbit retina. Proc Natl Acad Sci U S A. 1980 Mar;77(3):1671–1675. doi: 10.1073/pnas.77.3.1671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Massey S. C., Neal M. J. The light evoked release of acetylcholine from the rabbit retina iN vivo and its inhibition by gamma-aminobutyric acid. J Neurochem. 1979 Apr;32(4):1327–1329. doi: 10.1111/j.1471-4159.1979.tb11062.x. [DOI] [PubMed] [Google Scholar]
  23. Miller R. F., Frumkes T. E., Slaughter M., Dacheux R. F. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. I. Receptors, horizontal cells, bipolars, and G-cells. J Neurophysiol. 1981 Apr;45(4):743–763. doi: 10.1152/jn.1981.45.4.743. [DOI] [PubMed] [Google Scholar]
  24. Miller R. F., Frumkes T. E., Slaughter M., Dacheux R. F. Physiological and pharmacological basis of GABA and glycine action on neurons of mudpuppy retina. II. Amacrine and ganglion cells. J Neurophysiol. 1981 Apr;45(4):764–782. doi: 10.1152/jn.1981.45.4.764. [DOI] [PubMed] [Google Scholar]
  25. Murakami M., Otsu K., Otsuka T. Effects of chemicals on receptors and horizontal cells in the retina. J Physiol. 1972 Dec;227(3):899–913. doi: 10.1113/jphysiol.1972.sp010065. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. Neal M. J. Amino acid transmitter substances in the vertebrate retina. Gen Pharmacol. 1976 Oct;7(5):321–332. doi: 10.1016/0306-3623(76)90014-8. [DOI] [PubMed] [Google Scholar]
  27. Neal M. J., Cunningham J. R., James T. A., Joseph M., Collins J. F. The effect of 2-amino-4-phosphonobutyrate (APB) on acetylcholine release from the rabbit retina: evidence for on-channel input to cholinergic amacrine cells. Neurosci Lett. 1981 Nov 4;26(3):301–305. doi: 10.1016/0304-3940(81)90149-x. [DOI] [PubMed] [Google Scholar]
  28. Osborne N. N. Binding of [3H]-muscimol, a potent gamma-aminobutyric acid receptor agonist, to membranes of the bovine retina. Br J Pharmacol. 1980;71(1):259–264. doi: 10.1111/j.1476-5381.1980.tb10934.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Osborne N. N. In vitro experiments on the metabolism, uptake and release of 5-hydroxytryptamine in bovine retina. Brain Res. 1980 Feb 24;184(2):283–297. doi: 10.1016/0006-8993(80)90799-4. [DOI] [PubMed] [Google Scholar]
  30. Oyster C. W. The analysis of image motion by the rabbit retina. J Physiol. 1968 Dec;199(3):613–635. doi: 10.1113/jphysiol.1968.sp008671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. Pasantes-Morales H., Klethi J., Urban P. F., Mandel P. The physiological role of taurine in retina: uptake and effect on electroretinogram (ERG). Physiol Chem Phys. 1972;4(4):339–348. [PubMed] [Google Scholar]
  32. Pickles H. G., Simmonds M. A. Antagonism by penicillin of gamma-aminobutyric acid depolarizations at presynaptic sites in rat olfactory cortex and cuneate nucleus in vitro. Neuropharmacology. 1980 Jan;19(1):35–38. doi: 10.1016/0028-3908(80)90163-x. [DOI] [PubMed] [Google Scholar]
  33. Redburn D. A. GABA and glutamate as retina neurotransmitters in rabbit retina. Adv Biochem Psychopharmacol. 1981;27:79–89. [PubMed] [Google Scholar]
  34. Ross C. D., McDougal D. B., Jr The distribution of choline acetyltransferase activity in vertebrate retina. J Neurochem. 1976 Mar;26(3):521–526. doi: 10.1111/j.1471-4159.1976.tb01505.x. [DOI] [PubMed] [Google Scholar]
  35. Sarthy P. V., Lam D. M. Endogenous levels of neurotransmitter candidates in photoreceptor cells of the turtle retina. J Neurochem. 1979 Feb;32(2):455–461. doi: 10.1111/j.1471-4159.1979.tb00371.x. [DOI] [PubMed] [Google Scholar]
  36. Starr M. S. The effects of various amino acids, dopamine and some convulsants on the electroretinogram of the rabbit. Exp Eye Res. 1975 Jul;21(1):79–87. doi: 10.1016/0014-4835(75)90059-7. [DOI] [PubMed] [Google Scholar]
  37. Thomas T. N., Redburn D. A. 5-Hydroxytryptamine -- a neurotransmitter of bovine retina. Exp Eye Res. 1979 Jan;28(1):55–61. doi: 10.1016/0014-4835(79)90105-2. [DOI] [PubMed] [Google Scholar]
  38. Vaney D. I., Peichi L., Boycott B. B. Matching populations of amacrine cells in the inner nuclear and ganglion cell layers of the rabbit retina. J Comp Neurol. 1981 Jul 1;199(3):373–391. doi: 10.1002/cne.901990305. [DOI] [PubMed] [Google Scholar]
  39. Wilkin G. P., Hudson A. L., Hill D. R., Bowery N. G. Autoradiographic localization of GABAB receptors in rat cerebellum. Nature. 1981 Dec 10;294(5841):584–587. doi: 10.1038/294584a0. [DOI] [PubMed] [Google Scholar]
  40. Wu S. M., Dowling J. E. Effects of GABA and glycine on the distal cells of the cyprinid retina. Brain Res. 1980 Oct 20;199(2):401–414. doi: 10.1016/0006-8993(80)90697-6. [DOI] [PubMed] [Google Scholar]
  41. Wyatt H. J., Daw N. W. Directionally sensitive ganglion cells in the rabbit retina: specificity for stimulus direction, size, and speed. J Neurophysiol. 1975 May;38(3):613–626. doi: 10.1152/jn.1975.38.3.613. [DOI] [PubMed] [Google Scholar]
  42. Wyatt H. J., Day N. W. Specific effects of neurotransmitter antagonists on ganglion cells in rabbit retina. Science. 1976 Jan 16;191(4223):204–205. doi: 10.1126/science.1857. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES