Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1983 Jun;339:553–571. doi: 10.1113/jphysiol.1983.sp014733

Developmental changes in the distribution of acetylcholine receptors in the myotomes of Xenopus laevis.

I Chow, M W Cohen
PMCID: PMC1199178  PMID: 6887034

Abstract

The acquisition and distribution of nerve fibres and of acetylcholine (ACh) receptors were examined in the myotomes of Xenopus laevis during normal development. This muscle is well-suited for investigating temporal relationships during neuromuscular synaptogenesis because the age of the Xenopus embryo at the onset of innervation can be assessed with an accuracy of about one hour. Myotomal nerve fibres were visualized after staining them with nitroblue tetrazolium and ACh receptors were examined after exposure to alpha-bungarotoxin labelled with 125I or fluorescent dye. Nerve fibres were seen in the myotomes of some embryos as early as stage 19 (20 . 75 hr) and in virtually all embryos by stage 24 (26 . 25 hr). From the outset they were located mainly at the ends of the myotomes, but some myotomes also exhibited nerve fibres in more central regions. ACh receptors were already present in myotomes by stage 19 (20 . 75 hr) and initially had a widespread, uniform distribution. The density of extrajunctional ACh receptors increased until stage 36 (50 hr) and then declined less than 3-fold over the next 10 days of development. Discrete patches of high ACh receptor density began to appear at the ends of the myotomes at stage 22 (24 hr) and were seen in almost all embryos by stage 26 (29 . 5 hr). ACh receptor patches were also seen in central regions of some myotomes and these were usually aligned in patterns which resembled the course of nerve fibres. The present findings suggest that myotomal muscle cells in Xenopus embryos begin to acquire ACh receptors shortly before the arrival of nerve fibres and that discrete patches of ACh receptors begin to form at presumptive synaptic sites on the average about 3 hr after the arrival of the nerve fibres. The latter delay is considerably shorter than that in developing rat muscle. The temporal and spatial relationships between nerve fibres and the development of ACh receptor patches in Xenopus myotomes in vivo are consistent with findings in Xenopus cell cultures which indicate that nerve fibres can rapidly induce ACh receptor localization at sites of nerve--muscle contact.

Full text

PDF
553

Images in this article

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Anderson M. J., Cohen M. W. Fluorescent staining of acetylcholine receptors in vertebrate skeletal muscle. J Physiol. 1974 Mar;237(2):385–400. doi: 10.1113/jphysiol.1974.sp010487. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Anderson M. J., Cohen M. W. Nerve-induced and spontaneous redistribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):757–773. doi: 10.1113/jphysiol.1977.sp011880. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Anderson M. J., Cohen M. W., Zorychta E. Effects of innervation on the distribution of acetylcholine receptors on cultured muscle cells. J Physiol. 1977 Jul;268(3):731–756. doi: 10.1113/jphysiol.1977.sp011879. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Anderson M. J., Kidokoro Y., Gruener R. Correlation between acetylcholine receptor localization and spontaneous synaptic potentials in cultures of nerve and muscle. Brain Res. 1979 Apr 20;166(1):185–190. doi: 10.1016/0006-8993(79)90662-0. [DOI] [PubMed] [Google Scholar]
  5. Bekoff A., Betz W. J. Acetylcholine hot spots: development on myotubes cultured from aneural limb buds. Science. 1976 Sep 3;193(4256):915–917. doi: 10.1126/science.948754. [DOI] [PubMed] [Google Scholar]
  6. Bennett M. R., Davey D. F., Uebel K. E. The growth of segmental nerves from the brachial myotomes into the proximal muscles of the chick forelimb during development. J Comp Neurol. 1980 Jan 15;189(2):335–357. doi: 10.1002/cne.901890209. [DOI] [PubMed] [Google Scholar]
  7. Bennett M. R., Pettigrew A. G. The formation of synapses in reinnervated and cross-reinnervated striated muscle during development. J Physiol. 1974 Sep;241(2):547–573. doi: 10.1113/jphysiol.1974.sp010671. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Bennett M. R., Pettigrew A. G. The formation of synapses in striated muscle during development. J Physiol. 1974 Sep;241(2):515–545. doi: 10.1113/jphysiol.1974.sp010670. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Berg D. K., Hall Z. W. Loss of alpha-bungarotoxin from junctional and extrajunctional acetylcholine receptors in rat diaphragm muscle in vivo and in organ culture. J Physiol. 1975 Nov;252(3):771–789. doi: 10.1113/jphysiol.1975.sp011169. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Berg D. K., Kelly R. B., Sargent P. B., Williamson P., Hall Z. W. Binding of -bungarotoxin to acetylcholine receptors in mammalian muscle (snake venom-denervated muscle-neonatal muscle-rat diaphragm-SDS-polyacrylamide gel electrophoresis). Proc Natl Acad Sci U S A. 1972 Jan;69(1):147–151. doi: 10.1073/pnas.69.1.147. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Betz H., Bourgeois J. P., Changeux J. P. Evolution of cholinergic proteins in developing slow and fast skeletal muscles in chick embryo. J Physiol. 1980 May;302:197–218. doi: 10.1113/jphysiol.1980.sp013238. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Bevan S., Steinbach J. H. The distribution of alpha-bungarotoxin binding sites of mammalian skeletal muscle developing in vivo. J Physiol. 1977 May;267(1):195–213. doi: 10.1113/jphysiol.1977.sp011808. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Blackshaw S. E., Warner A. E. Low resistance junctions between mesoderm cells during development of trunk muscles. J Physiol. 1976 Feb;255(1):209–230. doi: 10.1113/jphysiol.1976.sp011276. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Blackshaw S., Warner A. Onset of acetylcholine sensitivity and endplate activity in developing myotome muscles of Xenopus. Nature. 1976 Jul 15;262(5565):217–218. doi: 10.1038/262217a0. [DOI] [PubMed] [Google Scholar]
  15. Braithwaite A. W., Harris A. J. Neural influence on acetylcholine receptor clusters in embryonic development of skeletal muscles. Nature. 1979 Jun 7;279(5713):549–551. doi: 10.1038/279549a0. [DOI] [PubMed] [Google Scholar]
  16. Burden S. Development of the neuromuscular junction in the chick embryo: the number, distribution, and stability of acetylcholine receptors. Dev Biol. 1977 Jun;57(2):317–329. doi: 10.1016/0012-1606(77)90218-4. [DOI] [PubMed] [Google Scholar]
  17. Cohen M. W., Anderson M. J., Zorychta E., Weldon P. R. Accumulation of acetylcholine receptors at nerve-muscle contacts in culture. Prog Brain Res. 1979;49:335–349. doi: 10.1016/S0079-6123(08)64645-2. [DOI] [PubMed] [Google Scholar]
  18. DIAMOND J., MILEDI R. A study of foetal and new-born rat muscle fibres. J Physiol. 1962 Aug;162:393–408. doi: 10.1113/jphysiol.1962.sp006941. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Dennis M. J. Development of the neuromuscular junction: inductive interactions between cells. Annu Rev Neurosci. 1981;4:43–68. doi: 10.1146/annurev.ne.04.030181.000355. [DOI] [PubMed] [Google Scholar]
  20. Dennis M. J., Ziskind-Conhaim L., Harris A. J. Development of neuromuscular junctions in rat embryos. Dev Biol. 1981 Jan 30;81(2):266–279. doi: 10.1016/0012-1606(81)90290-6. [DOI] [PubMed] [Google Scholar]
  21. Fambrough D. M. Control of acetylcholine receptors in skeletal muscle. Physiol Rev. 1979 Jan;59(1):165–227. doi: 10.1152/physrev.1979.59.1.165. [DOI] [PubMed] [Google Scholar]
  22. Filogamo G., Gabella G. The development of neuro-muscular correlations, in vertebrates. Arch Biol (Liege) 1967;78(1):9–60. [PubMed] [Google Scholar]
  23. Frank E., Fischbach G. D. Early events in neuromuscular junction formation in vitro: induction of acetylcholine receptor clusters in the postsynaptic membrane and morphology of newly formed synapses. J Cell Biol. 1979 Oct;83(1):143–158. doi: 10.1083/jcb.83.1.143. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. HUGHES A. The development of the primary sensory system in Xenopus laevis (Daudin). J Anat. 1957 Jul;91(3):323–338. [PMC free article] [PubMed] [Google Scholar]
  25. Hamilton L. The formation of somites in Xenopus. J Embryol Exp Morphol. 1969 Sep;22(2):253–264. [PubMed] [Google Scholar]
  26. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. I. Neural regulation of muscle fibre numbers. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):257–277. doi: 10.1098/rstb.1981.0076. [DOI] [PubMed] [Google Scholar]
  27. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. II. Neural regulation of muscle cholinesterase. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):279–286. doi: 10.1098/rstb.1981.0077. [DOI] [PubMed] [Google Scholar]
  28. Harris A. J. Embryonic growth and innervation of rat skeletal muscles. III. Neural regulation of junctional and extra-junctional acetylcholine receptor clusters. Philos Trans R Soc Lond B Biol Sci. 1981 Jul 16;293(1065):287–314. doi: 10.1098/rstb.1981.0078. [DOI] [PubMed] [Google Scholar]
  29. Hayes B. P., Roberts A. Synaptic junction development in the spinal cord of an amphibian embryo: an electron microscope study. Z Zellforsch Mikrosk Anat. 1973 Feb 12;137(2):251–269. doi: 10.1007/BF00307433. [DOI] [PubMed] [Google Scholar]
  30. Kidokoro Y., Anderson M. J., Gruener R. Changes in synaptic potential properties during acetylcholine receptor accumulation and neurospecific interactions in Xenopus nerve-muscle cell culture. Dev Biol. 1980 Aug;78(2):464–483. doi: 10.1016/0012-1606(80)90347-4. [DOI] [PubMed] [Google Scholar]
  31. Kidokoro Y. Developmental changes of spontaneous synaptic potential properties in the rat neuromuscular contact formed in culture. Dev Biol. 1980 Jul;78(1):231–241. doi: 10.1016/0012-1606(80)90332-2. [DOI] [PubMed] [Google Scholar]
  32. Ko P. K., Anderson M. J., Cohen M. W. Denervated skeletal muscle fibers develop discrete patches of high acetylcholine receptor density. Science. 1977 Apr 29;196(4289):540–542. doi: 10.1126/science.850796. [DOI] [PubMed] [Google Scholar]
  33. Kullberg R. W., Brehm P., Steinbach J. H. Nonjunctional acetylcholine receptor channel open time decreases during development of Xenopus muscle. Nature. 1981 Jan 29;289(5796):411–413. doi: 10.1038/289411a0. [DOI] [PubMed] [Google Scholar]
  34. Kullberg R. W., Lentz T. L., Cohen M. W. Development of the myotomal neuromuscular junction in Xenopus laevis: an electrophysiological and fine-structural study. Dev Biol. 1977 Oct 1;60(1):101–129. doi: 10.1016/0012-1606(77)90113-0. [DOI] [PubMed] [Google Scholar]
  35. Kullberg R. W., Mikelberg F. S., Cohen M. W. Contribution of cholinesterase to developmental decreases in the time course of synaptic potentials at an amphibian neuromuscular junction. Dev Biol. 1980 Mar 15;75(2):255–267. doi: 10.1016/0012-1606(80)90161-x. [DOI] [PubMed] [Google Scholar]
  36. Landmesser L. The development of motor projection patterns in the chick hind limb. J Physiol. 1978 Nov;284:391–414. doi: 10.1113/jphysiol.1978.sp012546. [DOI] [PMC free article] [PubMed] [Google Scholar]
  37. Letinsky M. S., Decino P. A. Histological staining of pre- and postsynaptic components of amphibian neuromuscular junctions. J Neurocytol. 1980 Jun;9(3):305–320. doi: 10.1007/BF01181539. [DOI] [PubMed] [Google Scholar]
  38. Lømo T., Slater C. R. Acetylcholine sensitivity of developing ectopic nerve-muscle junctions in adult rat soleus muscles. J Physiol. 1980 Jun;303:173–189. doi: 10.1113/jphysiol.1980.sp013279. [DOI] [PMC free article] [PubMed] [Google Scholar]
  39. MACKAY B., MUIR A. R., PETERS A. Observations on the terminal innervation of segmental muscle fibres in amphibia. Acta Anat (Basel) 1960;40:1–12. doi: 10.1159/000141568. [DOI] [PubMed] [Google Scholar]
  40. Matthews-Bellinger J., Salpeter M. M. Distribution of acetylcholine receptors at frog neuromuscular junctions with a discussion of some physiological implications. J Physiol. 1978 Jun;279:197–213. doi: 10.1113/jphysiol.1978.sp012340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  41. Mebs D., Narita K., Iwanaga S., Samejima Y., Lee C. Y. Amino acid sequence of -bungarotoxin from the venom of Bungarus multicinctus. Biochem Biophys Res Commun. 1971 Aug 6;44(3):711–716. doi: 10.1016/s0006-291x(71)80141-9. [DOI] [PubMed] [Google Scholar]
  42. Moody-Corbett F., Cohen M. W. Localization of cholinesterase at sites of high acetylcholine receptor density on embryonic amphibian muscle cells cultured without nerve. J Neurosci. 1981 Jun;1(6):596–605. doi: 10.1523/JNEUROSCI.01-06-00596.1981. [DOI] [PMC free article] [PubMed] [Google Scholar]
  43. Muntz L. Myogenesis in the trunk and leg during development of the tadpole of Xenopus laevis (Daudin 1802). J Embryol Exp Morphol. 1975 Jun;33(3):757–774. [PubMed] [Google Scholar]
  44. Peng H. B., Cheng P. C., Luther P. W. Formation of ACh receptor clusters induced by positively charged latex beads. Nature. 1981 Aug 27;292(5826):831–834. doi: 10.1038/292831a0. [DOI] [PubMed] [Google Scholar]
  45. Puro D. G., De Mello F. G., Nirenberg M. Synapse turnover: the formation and termination of transient synapses. Proc Natl Acad Sci U S A. 1977 Nov;74(11):4977–4981. doi: 10.1073/pnas.74.11.4977. [DOI] [PMC free article] [PubMed] [Google Scholar]
  46. Roberts A., Hayes B. P. The anatomy and function of 'free' nerve endings in an amphibian skin sensory system. Proc R Soc Lond B Biol Sci. 1977 Apr;196(1125):415–429. doi: 10.1098/rspb.1977.0048. [DOI] [PubMed] [Google Scholar]
  47. Spitzer N. C. Ion channels in development. Annu Rev Neurosci. 1979;2:363–397. doi: 10.1146/annurev.ne.02.030179.002051. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES