Abstract
Direct observations have been made of responses of individual arterioles and venules of rat spinotrapezius muscle to contraction of the skeletal muscle fibres. Stimuli of 4-6 V intensity, 0.1 ms duration, delivered via a micro-electrode inserted into the spinotrapezius, evoked contraction of a small bundle of skeletal muscle fibres, followed by vasodilatation which was limited to all those arterioles and venules which crossed or ran alongside activated muscle fibres. Since venules outside the region of contraction, but supplied by dilating arterioles, were not passively distended by the attendant rise in intravascular pressure, it is concluded that both the arterioles and venules dilated actively in response to muscle contraction. All arterioles responded to a single twitch contraction, the terminal arterioles (7-13 micron i.d.) showing the largest increase in diameter. Collecting venules (9-18 micron i.d.) responded to just two twitches in 1 s and larger venules to five twitches in 1 s. When twitch contractions were continuously evoked for 10 s, the responses in individual arterioles and venules were graded with twitch frequency, the fastest and largest response occurring at 6-8 Hz. Tetanic contraction, at 40 Hz for 1 s, produced faster responses in all vessels, a maximum 55% increase from resting internal diameter being attained in only 8 s in some terminal arterioles. In all vessels the responses to tetanic contraction were equal to the maximal dilatation induced by papaverine. These results, in contrast with conclusions drawn from indirect estimates of venous responses, show that venules, like arterioles, dilate actively in response to muscle contraction. Venule dilatation may reduce the rise in capillary hydrostatic pressure, thereby limiting the outward filtration of fluid.
Full text
PDF












Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Bevegård B. S., Shepherd J. T. Effect of local exercise of forearm muscles on forearm capacitance vessels. J Appl Physiol. 1965 Sep;20(5):968–974. doi: 10.1152/jappl.1965.20.5.968. [DOI] [PubMed] [Google Scholar]
- Eriksson E., Lisander B. Changes in precapillary resistance in skeletal muscle vessels studied by intravital microscopy. Acta Physiol Scand. 1972 Mar;84(3):295–305. doi: 10.1111/j.1748-1716.1972.tb05181.x. [DOI] [PubMed] [Google Scholar]
- Folkow B., Sonnenschein R. R., Wright D. L. Loci of neurogenic and metabolic effects on precapillary vessels of skeletal muscle. Acta Physiol Scand. 1971 Apr;81(4):459–471. doi: 10.1111/j.1748-1716.1971.tb04924.x. [DOI] [PubMed] [Google Scholar]
- Fronek K., Zweifach B. W. Microvascular pressure distribution in skeletal muscle and the effect of vasodilation. Am J Physiol. 1975 Mar;228(3):791–796. doi: 10.1152/ajplegacy.1975.228.3.791. [DOI] [PubMed] [Google Scholar]
- Gaskell W H. The Changes of the Blood-stream in Muscles through Stimulation of their Nerves. J Anat Physiol. 1877 Apr;11(Pt 3):360–402.3. [PMC free article] [PubMed] [Google Scholar]
- Gorczynski R. J., Duling B. R. Role of oxygen in arteriolar functional vasodilation in hamster striated muscle. Am J Physiol. 1978 Nov;235(5):H505–H515. doi: 10.1152/ajpheart.1978.235.5.H505. [DOI] [PubMed] [Google Scholar]
- Gorczynski R. J., Klitzman B., Duling B. R. Interrelations between contracting striated muscle and precapillary microvessels. Am J Physiol. 1978 Nov;235(5):H494–H504. doi: 10.1152/ajpheart.1978.235.5.H494. [DOI] [PubMed] [Google Scholar]
- Gray S. D. Effect of hypertonicity on vascular dimensions in skeletal muscle. Microvasc Res. 1971 Jan;3(1):117–124. doi: 10.1016/0026-2862(71)90016-1. [DOI] [PubMed] [Google Scholar]
- HILTON S. M. A peripheral arterial conducting mechanism underlying dilatation of the femoral artery and concerned in functional vasodilatation in skeletal muscle. J Physiol. 1959 Dec;149:93–111. doi: 10.1113/jphysiol.1959.sp006327. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton S. M. Evidence for phosphate as a mediator of functional hyperaemia in skeletal muscles. Pflugers Arch. 1977 Jun 8;369(2):151–159. doi: 10.1007/BF00591571. [DOI] [PubMed] [Google Scholar]
- Hilton S. M., Hudlická O., Jackson J. R. Proceedings: The movement of inorganic phosphate ions across capillaries in skeletal muscle during exercise and at rest. J Physiol. 1974 Jun;239(2):98P–99P. [PubMed] [Google Scholar]
- Hilton S. M., Hudlická O., Marshall J. M. Possible mediators of functional hyperaemia in skeletal muscle. J Physiol. 1978 Sep;282:131–147. doi: 10.1113/jphysiol.1978.sp012453. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton S. M., Jeffries M. G., Vrbová G. Functional specializations of the vascular bed of soleus. J Physiol. 1970 Mar;206(3):543–562. doi: 10.1113/jphysiol.1970.sp009030. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hilton S. M. Local chemical factors involved in vascular control. Angiologica. 1971;8(3-5):174–186. doi: 10.1159/000157893. [DOI] [PubMed] [Google Scholar]
- KJELLMER I., ODELRAM H. THE EFFECT OF SOME PHYSIOLOGICAL VASODILATORS ON THE VASCULAR BED OF SKELETAL MUSCLE. Acta Physiol Scand. 1965 Jan-Feb;63:94–102. doi: 10.1111/j.1748-1716.1965.tb04046.x. [DOI] [PubMed] [Google Scholar]
- Marshall J. M. The influence of the sympathetic nervous system on individual vessels of the microcirculation of skeletal muscle of the rat. J Physiol. 1982 Nov;332:169–186. doi: 10.1113/jphysiol.1982.sp014408. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Mellander S. Interaction of local and nervous factors in vascular control. Angiologica. 1971;8(3-5):187–201. doi: 10.1159/000157894. [DOI] [PubMed] [Google Scholar]
- Mellander S., Johansson B. Control of resistance, exchange, and capacitance functions in the peripheral circulation. Pharmacol Rev. 1968 Sep;20(3):117–196. [PubMed] [Google Scholar]
- Mohrman D. E., Cant J. R., Sparks H. V. Time course of vascular resistance and venous oxygen changes following brief tetanus of dog skeletal muscle. Circ Res. 1973 Sep;33(3):323–336. doi: 10.1161/01.res.33.3.323. [DOI] [PubMed] [Google Scholar]
- Renkin E. M., Hudlická O., Sheehan R. M. Influence of metabolic vasodilatation on blood-tissue diffusion in skeletal muscle. Am J Physiol. 1966 Jul;211(1):87–98. doi: 10.1152/ajplegacy.1966.211.1.87. [DOI] [PubMed] [Google Scholar]
- Richardson D. R., Zweifach B. W. Pressure relationships in the macro- and microcirculation of the mesentery. Microvasc Res. 1970 Oct;2(4):474–488. doi: 10.1016/0026-2862(70)90040-3. [DOI] [PubMed] [Google Scholar]
- Taylor K., Calvey T. N. Histochemical characteristics and contractile properties of the spinotrapezius muscle in the rat and the mouse. J Anat. 1977 Feb;123(Pt 1):67–76. [PMC free article] [PubMed] [Google Scholar]