Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Apr;349:27–42. doi: 10.1113/jphysiol.1984.sp015140

The influence of blood pressure on trans-synovial flow in the rabbit.

A D Knight, J R Levick
PMCID: PMC1199321  PMID: 6737295

Abstract

Fluid exchange across the synovium lining the cavity of extended knees was studied in twenty rabbit hindquarters. The isolated hindquarters were perfused with blood from an extracorporeal pump-oxygenator system at controlled arterial pressure (PA) and venous pressure (PV). Intra-articular pressure (PJ) was set at 18 cmH2O in most experiments. The rate of trans-synovial absorption of Krebs solution (QS), measured by a drop-counter, was a negative linear function of PA (70-160 mmHg) and of PV (2-42 cmH2O). The sensitivity of exchange to venous pressure ( dQS / dPV , mean -0.25 +/- 0.03 microliter min-1 mmHg-1) was greater than its sensitivity to arterial pressure ( dQS /dPA, mean -0.17 +/- 0.02 microliter min-1 mmHg-1). The ratio of the slopes, ( dQS / dPV )/( dQS /dPA), indicated the pre- to post-capillary vascular resistance ratio. From this ratio and PA, PV, synovial capillary pressures PC were calculated by the equation of Pappenheimer & Soto - Rivera (1948). Trans-synovial absorption rate was a negative linear function of PC. This observation supports the application to the synovial cavity of Starling's hypothesis for fluid exchange between interstitial spaces and plasma (Starling, 1896). The slope dQS /dPC equalled the net hydraulic conductance of the blood-joint barrier (synovium plus capillary endothelium), and averaged -0.425 +/- 0.025 microliter min-1 mmHg-1 at PJ = 18 cmH2O. When PJ was subatmospheric, as is common in extended normal joints, fluid exchange (measured indirectly as dPJ /dt) was only approximately 1/4 as sensitive to blood pressure as at PJ = 18 cmH2O. This observation supported the view that the conductance of the blood-joint barrier depends on PJ.

Full text

PDF
27

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Bockman E. L., McKenzie J. E., Ferguson J. L. Resting blood flow and oxygen consumption in soleus and gracilis muscles of cats. Am J Physiol. 1980 Oct;239(4):H516–H524. doi: 10.1152/ajpheart.1980.239.4.H516. [DOI] [PubMed] [Google Scholar]
  2. CAUGHEY D. E., BYWATERS E. G. Joint fluid pressure in chronic knee effusions. Ann Rheum Dis. 1963 Mar;22:106–109. doi: 10.1136/ard.22.2.106. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Durán W. N., Renkin E. M. Oxygen consumption and blood flow in resting mammalian skeletal muscle. Am J Physiol. 1974 Jan;226(1):173–177. doi: 10.1152/ajplegacy.1974.226.1.173. [DOI] [PubMed] [Google Scholar]
  4. Edwards J. C., Sedgwick A. D., Willoughby D. A. The formation of a structure with the features of synovial lining by subcutaneous injection of air: an in vivo tissue culture system. J Pathol. 1981 Jun;134(2):147–156. doi: 10.1002/path.1711340205. [DOI] [PubMed] [Google Scholar]
  5. Granger D. N., Richardson P. D., Taylor A. E. Volumetric assessment of the capillary filtration coefficient in the cat small intestine. Pflugers Arch. 1979 Jul;381(1):25–33. doi: 10.1007/BF00582328. [DOI] [PubMed] [Google Scholar]
  6. Green K. L. The anti-inflammatory effect of catecholamines in the peritoneal cavity and hind paw of the mouse. Br J Pharmacol. 1972 Jun;45(2):322–332. doi: 10.1111/j.1476-5381.1972.tb08086.x. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. HANSEN A. T. A self-recording electronic osmometer for quick, direct measurement of colloid osmotic pressure in small samples. Acta Physiol Scand. 1961 Nov-Dec;53:197–213. doi: 10.1111/j.1748-1716.1961.tb02278.x. [DOI] [PubMed] [Google Scholar]
  8. HOLTON P. Antidromic vasodilatation in the isolated perfused ear of the rabbit. J Physiol. 1956 Jan 27;131(1):176–185. doi: 10.1113/jphysiol.1956.sp005454. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Hamanishi C. Ultrastructural basis of blood-synovial barrier--results with five electron-opaque tracers. Nihon Geka Hokan. 1978 May 1;47(3):259–279. [PubMed] [Google Scholar]
  10. Henriksen O. Local nervous mechanism in regulation of blood flow in human subcutaneous tissue. Acta Physiol Scand. 1976 Jul;97(3):385–391. doi: 10.1111/j.1748-1716.1976.tb10278.x. [DOI] [PubMed] [Google Scholar]
  11. Jarvis S. M., Young J. D. Nucleoside translocation in sheep reticulocytes and fetal erythrocytes: a proposed model for the nucleoside transporter. J Physiol. 1982 Mar;324:47–66. doi: 10.1113/jphysiol.1982.sp014100. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. Jayson MISt Dixon A. J. Intra-articular pressure in rheumatoid arthritis of the knee. II. Effect of intra-articular pressure on blood circulation to the synovium. Ann Rheum Dis. 1970 May;29(3):266–268. doi: 10.1136/ard.29.3.266. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. Knight A. D., Levick J. R. Pressure-volume relationships above and below atmospheric pressure in the synovial cavity of the rabbit knee. J Physiol. 1982 Jul;328:403–420. doi: 10.1113/jphysiol.1982.sp014273. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. Knight A. D., Levick J. R. The density and distribution of capillaries around a synovial cavity. Q J Exp Physiol. 1983 Oct;68(4):629–644. doi: 10.1113/expphysiol.1983.sp002753. [DOI] [PubMed] [Google Scholar]
  15. Knowlton F. P., Starling E. H. The influence of variations in temperature and blood-pressure on the performance of the isolated mammalian heart. J Physiol. 1912 May 6;44(3):206–219. doi: 10.1113/jphysiol.1912.sp001511. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. Levick J. R. An investigation into the validity of subatmospheric pressure recordings from synovial fluid and their dependence on joint angle. J Physiol. 1979 Apr;289:55–67. doi: 10.1113/jphysiol.1979.sp012724. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Levick J. R. Contributions of the lymphatic and microvascular systems to fluid absorption from the synovial cavity of the rabbit knee. J Physiol. 1980 Sep;306:445–461. doi: 10.1113/jphysiol.1980.sp013406. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Levick J. R., Michel C. C. The effects of position and skin temperature on the capillary pressures in the fingers and toes. J Physiol. 1978 Jan;274:97–109. doi: 10.1113/jphysiol.1978.sp012136. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Levick J. R. The influence of hydrostatic pressure on trans-synovial fluid movement and on capsular expansion in the rabbit knee. J Physiol. 1979 Apr;289:69–82. doi: 10.1113/jphysiol.1979.sp012725. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. MELLANDER S. Comparative studies on the adrenergic neuro-hormonal control of resistance and capacitance blood vessels in the cat. Acta Physiol Scand Suppl. 1960;50(176):1–86. [PubMed] [Google Scholar]
  21. Michel C. C., Mason J. C., Curry F. E., Tooke J. E., Hunter P. J. A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci. 1974 Oct;59(4):283–309. doi: 10.1113/expphysiol.1974.sp002275. [DOI] [PubMed] [Google Scholar]
  22. Pappenheimer J. R. Blood flow, arterial oxygen saturation, and oxygen consumption in the isolated perfused hindlimb of the dog. J Physiol. 1941 Mar 25;99(3):283–303. doi: 10.1113/jphysiol.1941.sp003901. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. Proctor E., De Bono A. H. A low priming volume oxygenator for bloodless priming in cardiopulmonary bypass. Thorax. 1965 Nov;20(6):540–544. doi: 10.1136/thx.20.6.540. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Proctor E., Fernando A. R. A range of research oxygenators for experimental cardiopulmonary bypass. J Surg Res. 1973 Aug;15(2):112–116. doi: 10.1016/0022-4804(73)90151-0. [DOI] [PubMed] [Google Scholar]
  25. Rippe B., Grega G. J. Effects of isoprenaline and cooling on histamine induced changes of capillary permeability in the rat hindquarter vascular bed. Acta Physiol Scand. 1978 Jul;103(3):252–262. doi: 10.1111/j.1748-1716.1978.tb06212.x. [DOI] [PubMed] [Google Scholar]
  26. Ruderman N. B., Kemmer F. W., Goodman M. N., Berger M. Oxygen consumption in perfused skeletal muscle. Effect of perfusion with aged, fresh and aged-rejuvenated erythrocytes on oxygen consumption, tissue metabolites and inhibition of glucose utilization by acetoacetate. Biochem J. 1980 Jul 15;190(1):57–64. doi: 10.1042/bj1900057. [DOI] [PMC free article] [PubMed] [Google Scholar]
  27. Starling E. H. On the Absorption of Fluids from the Connective Tissue Spaces. J Physiol. 1896 May 5;19(4):312–326. doi: 10.1113/jphysiol.1896.sp000596. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. Whittaker S. R., Winton F. R. The apparent viscosity of blood flowing in the isolated hindlimb of the dog, and its variation with corpuscular concentration. J Physiol. 1933 Jul 10;78(4):339–369. doi: 10.1113/jphysiol.1933.sp003009. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES