Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Apr;349:419–440. doi: 10.1113/jphysiol.1984.sp015165

Effect of dietary carbohydrate on monosaccharide uptake by mouse small intestine in vitro.

J M Diamond, W H Karasov, C Cary, D Enders, R Yung
PMCID: PMC1199346  PMID: 6737300

Abstract

Using intestinal sleeves in vitro, we studied the effect of dietary carbohydrate on active monosaccharide uptake in mice. Dietary carbohydrate did not affect numerous parameters of intestinal structure, such as length, circumference, weight, protein content, villus dimensions and density, and area at the villus level. Mice on a carbohydrate-free diet had active D-glucose uptake relatively independent of position along the small intestine. A carbohydrate-containing diet reversibly and within 1 day stimulated uptake except in the ileum, restoring the proximal-to-distal gradient in glucose uptake normally observed. This stimulation involved a 81-116% increase in the Michaelis- Menton constant Vmax, and also an apparent increase in the Michaelis- Menton constant Km, that may however be an artifact arising from unstirred-layer effects. Active uptake of 3-O-methyl-D-glucose also increased, permeability to glucose remained unchanged, and proline uptake reversibly decreased (probably due to the lower protein content of the carbohydrate-containing diets). The effect of fasting on active monosaccharide uptake seemed largely due to withdrawal of dietary carbohydrate, rather than of calories per se. It is concluded that dietary carbohydrate causes induction of monosaccharide carriers in the intestine, along with its more familiar induction of pancreatic amylase and intestinal disaccharidases. Substrate-dependent carrier induction may be physiologically significant in maintaining the proximal-to-distal gradient of glucose transport. An appendix presents measurements of villus area as a function of position along the intestine.

Full text

PDF
419

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Altmann G. G., Leblond C. P. Factors influencing villus size in the small intestine of adult rats as revealed by transposition of intestinal segments. Am J Anat. 1970 Jan;127(1):15–36. doi: 10.1002/aja.1001270104. [DOI] [PubMed] [Google Scholar]
  2. Barry R. E., Jr Mucosal surface areas and villous morphology of the small intestine of small mammals: functional interpretations. J Mammal. 1976 May;57(2):273–290. [PubMed] [Google Scholar]
  3. Bode C., Eisenhardt J. M., Haberich F. J., Bode J. C. Influence of feeding fructose on fructose and glucose absorption in rat jejunum and ileum. Res Exp Med (Berl) 1981;179(2):163–168. doi: 10.1007/BF01851984. [DOI] [PubMed] [Google Scholar]
  4. Boyne R., Fell B. F., Robb I. The surface area of the intestinal mucosa in the lactating rat. J Physiol. 1966 Apr;183(3):570–575. doi: 10.1113/jphysiol.1966.sp007884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Cho B. H., Sauer N., Komor E., Tanner W. Glucose induces two amino acid transport systems in Chlorella. Proc Natl Acad Sci U S A. 1981 Jun;78(6):3591–3594. doi: 10.1073/pnas.78.6.3591. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Csáky T. Z., Fischer E. Intestinal sugar transport in experimental diabetes. Diabetes. 1981 Jul;30(7):568–574. doi: 10.2337/diab.30.7.568. [DOI] [PubMed] [Google Scholar]
  7. Debnam E. S., Levin R. J. Effects of fasting and semistarvation on the kinetics of active and passive sugar absorption across the small intestine in vivo. J Physiol. 1975 Nov;252(3):681–700. doi: 10.1113/jphysiol.1975.sp011165. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Debnam E. S., Levin R. J. Influence of specific dietary sugars on the jejunal mechanisms for glucose, galactose, and alpha-methyl glucoside absorption: evidence for multiple sugar carriers. Gut. 1976 Feb;17(2):92–99. doi: 10.1136/gut.17.2.92. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Diamond J. M., Karasov W. H. Gut physiology. Trophic control of the intestinal mucosa. Nature. 1983 Jul 7;304(5921):18–18. doi: 10.1038/304018a0. [DOI] [PubMed] [Google Scholar]
  10. Dowling R. H., Booth C. C. Structural and functional changes following small intestinal resection in the rat. Clin Sci. 1967 Feb;32(1):139–149. [PubMed] [Google Scholar]
  11. Duggleby R. G. A nonlinear regression program for small computers. Anal Biochem. 1981 Jan 1;110(1):9–18. doi: 10.1016/0003-2697(81)90104-4. [DOI] [PubMed] [Google Scholar]
  12. FISHER R. B., PARSONS D. S. Glucose absorption from surviving rat small intestine. J Physiol. 1949 Dec;110(3-4):281–293. doi: 10.1113/jphysiol.1949.sp004438. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. FISHER R. B., PARSONS D. S. The gradient of mucosal surface area in the small intestine of the rat. J Anat. 1950 Jul;84(3):272–282. [PMC free article] [PubMed] [Google Scholar]
  14. Furuya S., Yugari Y. Daily rhythmic change of L-histidine and glucose absorptions in rat small intestine in vivo. Biochim Biophys Acta. 1974 May 24;343(3):558–564. doi: 10.1016/0304-4165(74)90274-8. [DOI] [PubMed] [Google Scholar]
  15. Ginsburg J. M., Heggeness F. W. Adaptation in monosaccharide absorption in infant and adult rats. J Nutr. 1968 Dec;96(4):494–498. doi: 10.1093/jn/96.4.494. [DOI] [PubMed] [Google Scholar]
  16. Kotler D. P., Levine G. M., Shiau Y. F. Effects of luminal nutrition and metabolic status on in vivo glucose absorption. Am J Physiol. 1981 Jun;240(6):G432–G436. doi: 10.1152/ajpgi.1981.240.6.G432. [DOI] [PubMed] [Google Scholar]
  17. Kotler D. P., Levine G. M., Shiau Y. F. Effects of nutrients, endogenous secretions, and fasting on in vitro glucose uptake. Am J Physiol. 1980 Mar;238(3):G219–G227. doi: 10.1152/ajpgi.1980.238.3.G219. [DOI] [PubMed] [Google Scholar]
  18. LEBLOND C. P., MESSIER B. Renewal of chief cells and goblet cells in the small intestine as shown by radioautography after injection of thymidine-H3 into mice. Anat Rec. 1958 Nov;132(3):247–259. doi: 10.1002/ar.1091320303. [DOI] [PubMed] [Google Scholar]
  19. Levinson R. A., Englert E., Jr Small intestinal absorption of D-galactose and water in fasted and alloxan diabetic rats. Experientia. 1972 Sep 15;28(9):1039–1040. doi: 10.1007/BF01918658. [DOI] [PubMed] [Google Scholar]
  20. Lis M. T., Crampton R. F., Matthews D. M. Effect of dietary changes on intestinal absorption of L-methionine and L-methionyl-L-methionine in the rat. Br J Nutr. 1972 Jan;27(1):159–167. doi: 10.1079/bjn19720079. [DOI] [PubMed] [Google Scholar]
  21. Menge H., Gräfe M., Lorenz-Meyer H., Riecken E. O. The influence of food intake on the development of structural and functional adaptation following ileal resection in the rat. Gut. 1975 Jun;16(6):468–472. doi: 10.1136/gut.16.6.468. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. Murray D., Wild G. E. Effect of fasting on Na-K-ATPase activity in rat small intestinal mucosa. Can J Physiol Pharmacol. 1980 Jun;58(6):643–649. doi: 10.1139/y80-106. [DOI] [PubMed] [Google Scholar]
  23. Nakamura Y., Yasumoto S. K., Mitsuda H. Effect of excess L-histidine diet on active transport of L-histidine by isolated rat small intestine. J Nutr. 1972 Mar;102(3):359–363. doi: 10.1093/jn/102.3.359. [DOI] [PubMed] [Google Scholar]
  24. Neale R. J., Wiseman G. Active transport of L-glucose by isolated small intestine of the dietary-restricted rat. J Physiol. 1968 Oct;198(3):601–611. [PMC free article] [PubMed] [Google Scholar]
  25. Nunn A. S., Jr, Ellert M. S. Absorption and electrolyte changes of intestinal mucosa following substrate induction. Am J Physiol. 1967 Mar;212(3):711–716. doi: 10.1152/ajplegacy.1967.212.3.711. [DOI] [PubMed] [Google Scholar]
  26. QUASTLER H., SHERMAN F. G. Cell population kinetics in the intestinal epithelium of the mouse. Exp Cell Res. 1959 Jun;17(3):420–438. doi: 10.1016/0014-4827(59)90063-1. [DOI] [PubMed] [Google Scholar]
  27. Roy C. C., Dubois R. S. Monosaccharide induction of 3-O-methyl glucose transport through the rat jejunum. Proc Soc Exp Biol Med. 1972 Mar;139(3):883–886. doi: 10.3181/00379727-139-36258. [DOI] [PubMed] [Google Scholar]
  28. Sanford P. A., Smyth D. H. The effect of fasting on hexose transfer in rat intestine. J Physiol. 1974 Jun;239(2):285–299. doi: 10.1113/jphysiol.1974.sp010569. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. Scharrer E. Adaptation of intestinal amino acid transport. Experientia. 1972 Mar 15;28(3):267–267. doi: 10.1007/BF01928679. [DOI] [PubMed] [Google Scholar]
  30. Spector M. H., Levine G. M., Deren J. J. Direct and indirect effects of dextrose and amino acids on gut mass. Gastroenterology. 1977 Apr;72(4 Pt 1):706–710. [PubMed] [Google Scholar]
  31. Steiner M., Bourges H. R., Freedman L. S., Gray S. J. Effect of starvation on the tissue composition of the small intestine in the rat. Am J Physiol. 1968 Jul;215(1):75–77. doi: 10.1152/ajplegacy.1968.215.1.75. [DOI] [PubMed] [Google Scholar]
  32. Steiner M., Gray S. J. Effect of starvation on intestinal amino acid absorption. Am J Physiol. 1969 Sep;217(3):747–752. doi: 10.1152/ajplegacy.1969.217.3.747. [DOI] [PubMed] [Google Scholar]
  33. Thomson A. B., Dietschy J. M. Derivation of the equations that describe the effects of unstirred water layers on the kinetic parameters of active transport processes in the intestine. J Theor Biol. 1977 Jan 21;64(2):277–294. doi: 10.1016/0022-5193(77)90357-5. [DOI] [PubMed] [Google Scholar]
  34. Thomson A. B. Unstirred water layer and age-dependent changes in rabbit jejunal D-glucose transport. Am J Physiol. 1979 Jun;236(6):E685–E691. doi: 10.1152/ajpendo.1979.236.6.E685. [DOI] [PubMed] [Google Scholar]
  35. Urban E., Haley D. P. Glucose transport by rat small intestine after extensive small-bowel resection. Am J Dig Dis. 1978 Jun;23(6):531–540. doi: 10.1007/BF01072697. [DOI] [PubMed] [Google Scholar]
  36. Weser E., Bell D., Tawil T. Effects of octapeptide-cholecystokinin, secretin, and glucagon on intestinal mucosal growth in parenterally nourished rats. Dig Dis Sci. 1981 May;26(5):409–416. doi: 10.1007/BF01313582. [DOI] [PubMed] [Google Scholar]
  37. Westergaard H., Dietschy J. M. Delineation of the dimensions and permeability characteristics of the two major diffusion barriers to passive mucosal uptake in the rabbit intestine. J Clin Invest. 1974 Sep;54(3):718–732. doi: 10.1172/JCI107810. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Winne D. Unstirred layer, source of biased Michaelis constant in membrane transport. Biochim Biophys Acta. 1973 Feb 27;298(1):27–31. doi: 10.1016/0005-2736(73)90005-9. [DOI] [PubMed] [Google Scholar]
  39. Younoszai M. K. Jejunal adsorption of hexose in infants and adults. J Pediatr. 1974 Sep;85(3):446–448. doi: 10.1016/s0022-3476(74)80154-x. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES