Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Feb;347:545–559. doi: 10.1113/jphysiol.1984.sp015082

Relation between the specific H reflex facilitation preceding a voluntary movement and movement parameters in man.

A Eichenberger, D G Rüegg
PMCID: PMC1199463  PMID: 6707967

Abstract

In a reaction-time situation, the monosynaptic spinal reflex (H reflex) is facilitated before the onset of an electromyographic (e.m.g.) response. The aim of the present investigation was to study aspects of this facilitation. Human subjects were required to perform isometric plantarflexions of the foot in response to a visual stimulus. The movement was always on the same side in the simple reaction-time situation, and randomly with the right or left foot in the choice reaction-time situation. Stimuli to evoke H reflexes were applied bilaterally 40-400 ms after the onset of the visual stimulus. Pre-motor time, i.e. the interval between the onset of the visual stimulus and the e.m.g. response, and reaction time, i.e. the interval between the onset of the visual stimulus and the response on the torque recording, were computed. In both reaction-time situations, there was a significant facilitation of the ipsilateral H reflex 100-160 ms before e.m.g. onset and, in some subjects, a small facilitation of the contralateral H reflex. The specific facilitation, i.e. the difference between the facilitation on the ipsi- and contralateral side relative to the movement, was not significantly different on the right and left side. Pre-motor time was divided into the interval from the light onset until the onset of the specific facilitation, and the interval from the onset of the facilitation until the onset of the voluntary response. Both intervals increased, and the slope and the amplitude of the facilitation decreased with increasing pre-motor time and reaction time. The specificity of the H reflex facilitation in a choice reaction-time situation implies that the interval from light onset until the onset of the facilitation includes stimulus identification and response selection, and the interval from the onset of the facilitation until the e.m.g. response preparation of the motor system for the required movement. The present results suggest that the specific facilitation of the H reflex before a movement is caused by removal of presynaptic inhibition at I a terminals or by activation of interneurones intercalated in polysynaptic components of the H reflex rather than by a subthreshold activation of motoneurones.

Full text

PDF
545

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Blair-Thomas C. A., Luschei E. S. Increases in reflex excitability of monkey masseter motoneurons before a jaw-bite reaction-time response. J Neurophysiol. 1975 Jul;38(4):981–989. doi: 10.1152/jn.1975.38.4.981. [DOI] [PubMed] [Google Scholar]
  2. Bouaziz Z., Bouaziz M., Hugon M. Modulation of soleus electromyogram during electrical stimulation of medial gastrocnemius nerve in man. Electromyogr Clin Neurophysiol. 1975 Jan-Apr;15(1):31–41. [PubMed] [Google Scholar]
  3. Burke D., McKeon B., Skuse N. F. Dependence of the Achilles tendon reflex on the excitability of spinal reflex pathways. Ann Neurol. 1981 Dec;10(6):551–556. doi: 10.1002/ana.410100610. [DOI] [PubMed] [Google Scholar]
  4. Coquery J. M., Coulmance M. Variations d'amplitude des réflexes monosynaptiques avant un mouvement volontaire. Physiol Behav. 1971 Jan;6(1):65–69. doi: 10.1016/0031-9384(71)90016-3. [DOI] [PubMed] [Google Scholar]
  5. Desmedt J. E., Godaux E. Fast motor units are not preferentially activated in rapid voluntary contractions in man. Nature. 1977 Jun 23;267(5613):717–719. doi: 10.1038/267717a0. [DOI] [PubMed] [Google Scholar]
  6. Evarts E. V. Pyramidal tract activity associated with a conditioned hand movement in the monkey. J Neurophysiol. 1966 Nov;29(6):1011–1027. doi: 10.1152/jn.1966.29.6.1011. [DOI] [PubMed] [Google Scholar]
  7. Fetz E. E., Cheney P. D. Postspike facilitation of forelimb muscle activity by primate corticomotoneuronal cells. J Neurophysiol. 1980 Oct;44(4):751–772. doi: 10.1152/jn.1980.44.4.751. [DOI] [PubMed] [Google Scholar]
  8. Gottlieb G. L., Agarwal G. C., Stark L. Interactions between voluntary and postural mechanisms of thehuman motor system. J Neurophysiol. 1970 May;33(3):365–381. doi: 10.1152/jn.1970.33.3.365. [DOI] [PubMed] [Google Scholar]
  9. HENNEMAN E., SOMJEN G., CARPENTER D. O. FUNCTIONAL SIGNIFICANCE OF CELL SIZE IN SPINAL MOTONEURONS. J Neurophysiol. 1965 May;28:560–580. doi: 10.1152/jn.1965.28.3.560. [DOI] [PubMed] [Google Scholar]
  10. Hongo T., Jankowska E., Lundberg A. The rubrospinal tract. 3. Effects on primary afferent terminals. Exp Brain Res. 1972;15(1):39–53. doi: 10.1007/BF00234957. [DOI] [PubMed] [Google Scholar]
  11. Ioffe M. E. Supraspinal influences on spinal mechanisms activated prior to learned movement. Acta Neurobiol Exp (Wars) 1973;33(4):729–741. [PubMed] [Google Scholar]
  12. LUNDBERG A., VYKLICKY L. Inhibitory interaction between spinal relexes to primary afferents. Experientia. 1963 May 15;19:247–248. doi: 10.1007/BF02151360. [DOI] [PubMed] [Google Scholar]
  13. Luschei E., Saslow C., Glickstein M. Muscle potentials in reaction time. Exp Neurol. 1967 Aug;18(4):429–442. doi: 10.1016/0014-4886(67)90060-x. [DOI] [PubMed] [Google Scholar]
  14. Michie P. T., Clarke A. M., Sinden J. D., Glue L. C. Lateral facilitation of Hoffmann-reflexes prior to voluntary movement in a choice reaction time task. Appl Neurophysiol. 1975;38(3):191–196. doi: 10.1159/000102661. [DOI] [PubMed] [Google Scholar]
  15. Michie P. T., Clarke A. M., Sinden J. D., Glue L. C. Reaction time and spinal excitability in a simple reaction time task. Physiol Behav. 1976 Mar;16(3):311–315. doi: 10.1016/0031-9384(76)90138-4. [DOI] [PubMed] [Google Scholar]
  16. Nickerson R. S. Intersensory facilitation of reaction time: energy summation or preparation enhancement? Psychol Rev. 1973 Nov;80(6):489–509. doi: 10.1037/h0035437. [DOI] [PubMed] [Google Scholar]
  17. PAILLARD J. Rapports entre les durées de la période de silence et du myogramme dans le triceps sural chez l'homme. J Physiol (Paris) 1955;47(1):259–262. [PubMed] [Google Scholar]
  18. Pierrot-Deseilligny E., Lacert P., Cathala H. P. Amplitude et variabilité des réflexes monosynaptiques avant un mouvement volontaire. Physiol Behav. 1971 Oct;7(4):495–508. doi: 10.1016/0031-9384(71)90100-4. [DOI] [PubMed] [Google Scholar]
  19. Porter R., Hore J. Time course of minimal corticomotoneuronal excitatory postsynaptic potentials in lumbar motoneurons of the monkey. J Neurophysiol. 1969 May;32(3):443–451. doi: 10.1152/jn.1969.32.3.443. [DOI] [PubMed] [Google Scholar]
  20. RAAB D. H. Statistical facilitation of simple reaction times. Trans N Y Acad Sci. 1962 Mar;24:574–590. doi: 10.1111/j.2164-0947.1962.tb01433.x. [DOI] [PubMed] [Google Scholar]
  21. Rüegg D. G., Eichenberger A. Detection of reaction time by an adaptive filter based on the least squares fit. Electroencephalogr Clin Neurophysiol. 1983 Aug;56(2):256–258. doi: 10.1016/0013-4694(83)90081-0. [DOI] [PubMed] [Google Scholar]
  22. Thach W. T. Timing of activity in cerebellar dentate nucleus and cerebral motor cortex during prompt volitional movement. Brain Res. 1975 May 2;88(2):233–241. doi: 10.1016/0006-8993(75)90387-x. [DOI] [PubMed] [Google Scholar]
  23. Vallbo A. B. Muscle spindle response at the onset of isometric voluntary contractions in man. Time difference between fusimotor and skeletomotor effects. J Physiol. 1971 Oct;218(2):405–431. doi: 10.1113/jphysiol.1971.sp009625. [DOI] [PMC free article] [PubMed] [Google Scholar]
  24. Watt D. G., Stauffer E. K., Taylor A., Reinking R. M., Stuart D. G. Analysis of muscle receptor connections by spike-triggered averaging. 1. Spindle primary and tendon organ afferents. J Neurophysiol. 1976 Nov;39(6):1375–1392. doi: 10.1152/jn.1976.39.6.1375. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES