Abstract
Long-term potentiation (l.t.p.) was studied in area CA1 of rat hippocampal slices during development at post-natal days 1-8, 15 and 60. Tetanic stimulation at 100 Hz for 1 s was delivered to the fibres in stratum radiatum and the time course of potentiation was recorded in stratum pyramidale for 20 min after tetanus. L.t.p. was measured at 20 min post-tetanus as an increase in the amplitude of the population spike. The time course and magnitude of post-tetanic potentiation (p.t.p.) differed with age. For 60-day-old animals p.t.p. was seen as a maximally potentiated response immediately post-tetanus that declined to a smaller potentiated response by 5 min post-tetanus. For animals younger than 15 days the response was also maximally potentiated immediately post-tetanus with subsequent decline. However, the duration of maximal potentiation was shorter and the magnitude was less. A different time course of p.t.p. was observed at 15 days. The maximal potentiation was approximately equal to that seen at 60 days, but instead of declining, the response remained maximally potentiated throughout the entire post-tetanus monitoring period. L.t.p. was first observed at post-natal day 5, and by post-natal days 7 and 8 substantial levels of l.t.p. were seen consistently. The greatest magnitude of l.t.p. was found at 15 days, and was considerably more than that produced at 60 days. When the duration of l.t.p. was monitored for longer than 20 min the response declined back to pretetanus levels by 1-1 1/2 h for animals younger than 15 days. In 15-day-old rats the response remained maximally potentiated for the full 72 min that it was monitored, with no decline. In control experiments of low-frequency stimulation (l.f.s.) at 1/15 s for 100 stimuli, hippocampal slices from 60-day-old animals showed response elevation. In contrast, l.f.s. resulted in response decrement over time for slices from 5-15-day-old animals. Three measures of pretetanus excitability in area CA1 suggested an increase with age. The stimulus intensity required for field excitatory post-synaptic potential (e.p.s.p.) threshold declined, the magnitude of the maximal population spike amplitude increased, and the population spike latency decreased. These results suggest that the magnitude of l.t.p. is not strictly related to the pretetanus excitability of CA1 cells.(ABSTRACT TRUNCATED AT 400 WORDS)
Full text
PDF






















Images in this article
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Alger B. E., Megela A. L., Teyler T. J. Transient heterosynaptic depression in the hippocampal slice. Brain Res Bull. 1978 Mar-Apr;3(2):181–184. doi: 10.1016/0361-9230(78)90045-x. [DOI] [PubMed] [Google Scholar]
- Alger B. E., Teyler T. J. Long-term and short-term plasticity in the CA1, CA3, and dentate regions of the rat hippocampal slice. Brain Res. 1976 Jul 16;110(3):463–480. doi: 10.1016/0006-8993(76)90858-1. [DOI] [PubMed] [Google Scholar]
- Andersen P., Bliss T. V., Skrede K. K. Lamellar organization of hippocampal pathways. Exp Brain Res. 1971;13(2):222–238. doi: 10.1007/BF00234087. [DOI] [PubMed] [Google Scholar]
- Andersen P., Silfvenius H., Sundberg S. H., Sveen O. A comparison of distal and proximal dendritic synapses on CAi pyramids in guinea-pig hippocampal slices in vitro. J Physiol. 1980 Oct;307:273–299. doi: 10.1113/jphysiol.1980.sp013435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen P., Sundberg S. H., Sveen O., Swann J. W., Wigström H. Possible mechanisms for long-lasting potentiation of synaptic transmission in hippocampal slices from guinea-pigs. J Physiol. 1980 May;302:463–482. doi: 10.1113/jphysiol.1980.sp013256. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Andersen P., Sundberg S. H., Sveen O., Wigström H. Specific long-lasting potentiation of synaptic transmission in hippocampal slices. Nature. 1977 Apr 21;266(5604):736–737. doi: 10.1038/266736a0. [DOI] [PubMed] [Google Scholar]
- Barnes C. A. Memory deficits associated with senescence: a neurophysiological and behavioral study in the rat. J Comp Physiol Psychol. 1979 Feb;93(1):74–104. doi: 10.1037/h0077579. [DOI] [PubMed] [Google Scholar]
- Baudry M., Arst D., Oliver M., Lynch G. Development of glutamate binding sites and their regulation by calcium in rat hippocampus. Brain Res. 1981 Jan;227(1):37–48. doi: 10.1016/0165-3806(81)90092-4. [DOI] [PubMed] [Google Scholar]
- Bayer S. A. Development of the hippocampal region in the rat. I. Neurogenesis examined with 3H-thymidine autoradiography. J Comp Neurol. 1980 Mar 1;190(1):87–114. doi: 10.1002/cne.901900107. [DOI] [PubMed] [Google Scholar]
- Bayer S. A. Development of the hippocampal region in the rat. II. Morphogenesis during embryonic and early postnatal life. J Comp Neurol. 1980 Mar 1;190(1):115–134. doi: 10.1002/cne.901900108. [DOI] [PubMed] [Google Scholar]
- Bliss T. V., Gardner-Medwin A. R. Long-lasting increases of synaptic influence in the unanesthetized hippocampus. J Physiol. 1971 Jul;216(1):32P–33P. [PubMed] [Google Scholar]
- Bliss T. V., Gardner-Medwin A. R. Long-lasting potentiation of synaptic transmission in the dentate area of the unanaestetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):357–374. doi: 10.1113/jphysiol.1973.sp010274. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bliss T. V., Lomo T. Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol. 1973 Jul;232(2):331–356. doi: 10.1113/jphysiol.1973.sp010273. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Bliss T. V., Lomo T. Plasticity in a monosynaptic cortical pathway. J Physiol. 1970 Apr;207(2):61P–61P. [PubMed] [Google Scholar]
- Campbell B. A., Lytle L. D., Fibiger H. C. Ontogeny of adrenergic arousal and cholinergic inhibitory mechanisms in the rat. Science. 1969 Oct 31;166(3905):635–637. doi: 10.1126/science.166.3905.635. [DOI] [PubMed] [Google Scholar]
- Changeux J. P., Danchin A. Selective stabilisation of developing synapses as a mechanism for the specification of neuronal networks. Nature. 1976 Dec 23;264(5588):705–712. doi: 10.1038/264705a0. [DOI] [PubMed] [Google Scholar]
- Douglas R. M., Goddard G. V. Long-term potentiation of the perforant path-granule cell synapse in the rat hippocampus. Brain Res. 1975 Mar 21;86(2):205–215. doi: 10.1016/0006-8993(75)90697-6. [DOI] [PubMed] [Google Scholar]
- Douglas R. M. Long lasting synaptic potentiation in the rat dentate gyrus following brief high frequency stimulation. Brain Res. 1977 May 6;126(2):361–365. doi: 10.1016/0006-8993(77)90733-8. [DOI] [PubMed] [Google Scholar]
- Duffy C. J., Teyler T. J. A simple tissue slicer. Physiol Behav. 1975 Apr;14(04):525–526. doi: 10.1016/0031-9384(75)90023-2. [DOI] [PubMed] [Google Scholar]
- Duffy C. J., Teyler T. J. Development of potentiation in the dentate gyrus of rat: physiology and anatomy. Brain Res Bull. 1978 Sep-Oct;3(5):425–430. doi: 10.1016/0361-9230(78)90070-9. [DOI] [PubMed] [Google Scholar]
- Dunwiddie T., Lynch G. Long-term potentiation and depression of synaptic responses in the rat hippocampus: localization and frequency dependency. J Physiol. 1978 Mar;276:353–367. doi: 10.1113/jphysiol.1978.sp012239. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Dzidzishvili N. N., Kvirkvelia L. R. Electrophysiological signs of hippocampal development in ontogenesis. Prog Brain Res. 1968;22:414–426. doi: 10.1016/S0079-6123(08)63523-2. [DOI] [PubMed] [Google Scholar]
- Fifková E., Anderson C. L. Stimulation-induced changes in dimensions of stalks of dendritic spines in the dentate molecular layer. Exp Neurol. 1981 Nov;74(2):621–627. doi: 10.1016/0014-4886(81)90197-7. [DOI] [PubMed] [Google Scholar]
- Fifková E., Anderson C. L., Young S. J., Van Harreveld A. Effect of anisomycin on stimulation-induced changes in dendritic spines of the dentate granule cells. J Neurocytol. 1982 Apr;11(2):183–210. doi: 10.1007/BF01258243. [DOI] [PubMed] [Google Scholar]
- Fonnum F., Karlsen R. L., Malthe-Sørenssen D., Skrede K. K., Walaas I. Localization of neurotransmitters, particularly glutamate, in hippocampus, septum, nucleus accumbens and superior colliculus. Prog Brain Res. 1979;51:167–191. doi: 10.1016/S0079-6123(08)61304-7. [DOI] [PubMed] [Google Scholar]
- Hesse G. W., Teyler T. J. Reversible loss of hippocampal long term potentiation following electronconvulsive seizures. Nature. 1976 Dec 9;264(5586):562–564. doi: 10.1038/264562a0. [DOI] [PubMed] [Google Scholar]
- Leblanc M. O., Bland B. H. Developmental aspects of hippocampal electrical activity and motor behavior in the rat. Exp Neurol. 1979 Nov;66(2):220–237. doi: 10.1016/0014-4886(79)90076-1. [DOI] [PubMed] [Google Scholar]
- Lee K. S., Schottler F., Oliver M., Lynch G. Brief bursts of high-frequency stimulation produce two types of structural change in rat hippocampus. J Neurophysiol. 1980 Aug;44(2):247–258. doi: 10.1152/jn.1980.44.2.247. [DOI] [PubMed] [Google Scholar]
- Loy R. Development of afferent lamination in Ammon's horn of the rat. Anat Embryol (Berl) 1980;159(3):257–275. doi: 10.1007/BF00317650. [DOI] [PubMed] [Google Scholar]
- McNaughton B. L., Douglas R. M., Goddard G. V. Synaptic enhancement in fascia dentata: cooperativity among coactive afferents. Brain Res. 1978 Nov 24;157(2):277–293. doi: 10.1016/0006-8993(78)90030-6. [DOI] [PubMed] [Google Scholar]
- Minkwitz H. G. Quantitative Aspekte der ontogenetischen Entwicklung von Pyramidenneuronen (CA1) aus dem Hippocampus der Ratte. Verh Anat Ges. 1977;(71 Pt 1):149–156. [PubMed] [Google Scholar]
- Minkwitz H. G. Zur Entwicklung der Neuronenstruktur des Hippocampus während der prä- und postnatalen Ontogenese der Albinoratte. II. Mitteilung: Neurohistologische Darstellung der Entwicklung von Interneuronen und des Zusammenhanges lang- und kurzaxoniger Neurone. J Hirnforsch. 1976;17(3):233–253. [PubMed] [Google Scholar]
- Minkwitz H. G. Zur Entwicklung der Neuronenstruktur des Hippocampus während der prä- und postnatalen Ontogenese der Albinoratte. III. Mitteilung: Morphometrische Erfassung der ontogenetischen Veränderungen in Dendritenstruktur und Spinebesatz an Pyramidenneuronen (CA1) des Hippocampus. J Hirnforsch. 1976;17(3):255–275. [PubMed] [Google Scholar]
- Moshkov D. A., Petrovskaia L. L., Bragin A. G. Posttetanicheskie izmeneniia v ul'trastrukture gigantskikh shipikovskikh sinapsov polia CA3 gippokampa. Dokl Akad Nauk SSSR. 1977;237(6):1525–1528. [PubMed] [Google Scholar]
- Moshkov D. A., Petrovskaia L. L., Bragin A. G. Ul'trastrukturnoe izuchenie osnov posttetanicheskoi potentsiatsii v srezakh gippokampa metodom zamorazhivaniia-zameshcheniia. Tsitologiia. 1980 Jan;22(1):20–26. [PubMed] [Google Scholar]
- Pokorný J., Yamamoto T. Postnatal ontogenesis of hippocampal CA1 area in rats. I. Development of dendritic arborisation in pyramidal neurons. Brain Res Bull. 1981 Aug;7(2):113–120. doi: 10.1016/0361-9230(81)90075-7. [DOI] [PubMed] [Google Scholar]
- Pokorný J., Yamamoto T. Postnatal ontogenesis of hippocampal CA1 area in rats. II. Development of ultrastructure in stratum lacunosum and moleculare. Brain Res Bull. 1981 Aug;7(2):121–130. doi: 10.1016/0361-9230(81)90076-9. [DOI] [PubMed] [Google Scholar]
- Rawlins J. N., Green K. F. Lamellar organisation in the rat hippocampus. Exp Brain Res. 1977 Jun 27;28(3-4):335–344. doi: 10.1007/BF00235715. [DOI] [PubMed] [Google Scholar]
- Schwartzkroin P. A., Kunkel D. D., Mathers L. H. Development of rabbit hippocampus: anatomy. Brain Res. 1981 Nov;254(4):453–468. doi: 10.1016/0165-3806(81)90016-x. [DOI] [PubMed] [Google Scholar]
- Schwartzkroin P. A., Wester K. Long-lasting facilitation of a synaptic potential following tetanization in the in vitro hippocampal slice. Brain Res. 1975 May 16;89(1):107–119. doi: 10.1016/0006-8993(75)90138-9. [DOI] [PubMed] [Google Scholar]
- Skrede K. K., Westgaard R. H. The transverse hippocampal slice: a well-defined cortical structure maintained in vitro. Brain Res. 1971 Dec 24;35(2):589–593. doi: 10.1016/0006-8993(71)90508-7. [DOI] [PubMed] [Google Scholar]
- Teyler T. J. Brain slice preparation: hippocampus. Brain Res Bull. 1980 Jul-Aug;5(4):391–403. doi: 10.1016/s0361-9230(80)80009-8. [DOI] [PubMed] [Google Scholar]
- Teyler T. J., Mayhew W., Chrin C., Kane J. Neurophysiological field potential analysis by microcomputer. J Neurosci Methods. 1982 Mar;5(3):291–303. doi: 10.1016/0165-0270(82)90081-4. [DOI] [PubMed] [Google Scholar]
- Van Harreveld A., Fifkova E. Swelling of dendritic spines in the fascia dentata after stimulation of the perforant fibers as a mechanism of post-tetanic potentiation. Exp Neurol. 1975 Dec;49(3):736–749. doi: 10.1016/0014-4886(75)90055-2. [DOI] [PubMed] [Google Scholar]
- Yamamoto C., Chujo T. Long-term potentiation in thin hippocampal sections studied by intracellular and extracellular recordings. Exp Neurol. 1978 Jan 15;58(2):242–250. doi: 10.1016/0014-4886(78)90137-1. [DOI] [PubMed] [Google Scholar]
- Yamamoto C., Sawada S. Important factors in induction of long-term potentiation in thin hippocampal sections. Exp Neurol. 1981 Oct;74(1):122–130. doi: 10.1016/0014-4886(81)90153-9. [DOI] [PubMed] [Google Scholar]

