Skip to main content
The Journal of Physiology logoLink to The Journal of Physiology
. 1984 Jan;346:219–241. doi: 10.1113/jphysiol.1984.sp015018

Binding of sodium and potassium to the sodium pump of pig kidney evaluated from nucleotide-binding behaviour.

J Jensen, J G Nørby, P Ottolenghi
PMCID: PMC1199495  PMID: 6321716

Abstract

Using a rate-dialysis technique at 0-2 degrees C, the affinities of Na+ and K+ for the sodium pump of pig kidney outer medulla were determined from their effects on the binding of ADP to the enzyme. Since all experiments were carried out in the presence of Tris, the enzyme in absence of its specific ligands was assumed to be in a 'sodium-like' conformation. The model used in the analysis of the results assumed the enzyme to be a dimeric structure with two identical high-affinity nucleotide-binding sites. It is concluded from the data that the effects of Na+ and K+ on the binding of nucleotide to either subunit of a nucleotide-free enzyme are identical. The two subunits, taken together, have five identical and non-interacting K+-binding sites (Kdiss = 0.5 mM) whose occupation antagonizes nucleotide binding. The binding of a nucleotide molecule to a nucleotide-free enzyme results in the abolition of K+ binding to two of the five K+-binding sites. The binding of the second molecule of nucleotide prevents the binding of three more K+ ions to the enzyme. These results can explain the K+-induced curvature observed in nucleotide-binding isotherms in Scatchard plots. The two subunits, taken together, have five identical and non-interacting Na+-binding sites (Kdiss = 0.5 mM) whose occupation antagonizes the effects of K+ on nucleotide binding, but does not affect nucleotide binding directly. A few experiments carried out at 18 degrees C indicate that the model applies also at this temperature. It is likely that the cation sites investigated are intracellular ones and it is concluded that the binding of each cation to its site induces a specific conformational change in the neighbourhood of the site itself without affecting the regions around the remaining cation binding sites.

Full text

PDF
219

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Akera T., Brody T. M. Membrane adenosine triphosphatase. The effect of potassium on the formation and dissociation of the ouabain-enzyme complex. J Pharmacol Exp Ther. 1971 Mar;176(3):545–557. [PubMed] [Google Scholar]
  2. Beaugé L. A., Glynn I. M. Occlusion of K ions in the unphosphorylated sodium pump. Nature. 1979 Aug 9;280(5722):510–512. doi: 10.1038/280510a0. [DOI] [PubMed] [Google Scholar]
  3. Beaugé L. A., Glynn I. M. The equilibrium between different conformations of the unphosphorylated sodium pump: effects of ATP and of potassium ions, and their relevance to potassium transport. J Physiol. 1980 Feb;299:367–383. doi: 10.1113/jphysiol.1980.sp013130. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Cantley L. C., Jr, Cantley L. G., Josephson L. A characterization of vanadate interactions with the (Na,K)-ATPase. Mechanistic and regulatory implications. J Biol Chem. 1978 Oct 25;253(20):7361–7368. [PubMed] [Google Scholar]
  5. Cavieres J. D., Ellory J. C. The interaction of monovalent cations with the sodium pump of low-potassium goat erythrocytes. J Physiol. 1977 Sep;271(1):289–318. doi: 10.1113/jphysiol.1977.sp012001. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Colowick S. P., Womack F. C. Binding of diffusible molecules by macromolecules: rapid measurement by rate of dialysis. J Biol Chem. 1969 Feb 25;244(4):774–777. [PubMed] [Google Scholar]
  7. Eisner D. A., Richards D. E. The interaction of potassium ions and ATP on the sodium pump of resealed red cell ghosts. J Physiol. 1981;319:403–418. doi: 10.1113/jphysiol.1981.sp013917. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Fletcher J. E., Spector A. A., Ashbrook J. D. Analysis of macromolecule--ligand binding by determination of stepwise equilibrium constants. Biochemistry. 1970 Nov 10;9(23):4580–4587. doi: 10.1021/bi00825a018. [DOI] [PubMed] [Google Scholar]
  9. Garrahan P. J., Glynn I. M. The stoicheiometry of the sodium pump. J Physiol. 1967 Sep;192(1):217–235. doi: 10.1113/jphysiol.1967.sp008297. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. Glynn I. M., Richards D. E. Occlusion of rubidium ions by the sodium-potassium pump: its implications for the mechanism of potassium transport. J Physiol. 1982 Sep;330:17–43. doi: 10.1113/jphysiol.1982.sp014326. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. Hansen O., Skou J. C. A study on the influence of the concentration of Mg 2+ , P i , K + , Na + , and Tris on (Mg 2+ + P i )-supported g-strophanthin binding to (Na + = K + )activated ATPase from ox brain. Biochim Biophys Acta. 1973 Jun 7;311(1):51–66. doi: 10.1016/0005-2736(73)90254-x. [DOI] [PubMed] [Google Scholar]
  12. Hastings D., Skou J. C. Potassium binding to the (Na+ + K+)-ATPase. Biochim Biophys Acta. 1980 Sep 18;601(2):380–385. doi: 10.1016/0005-2736(80)90542-8. [DOI] [PubMed] [Google Scholar]
  13. Hegyvary C., Post R. L. Binding of adenosine triphosphate to sodium and potassium ion-stimulated adenosine triphosphatase. J Biol Chem. 1971 Sep 10;246(17):5234–5240. [PubMed] [Google Scholar]
  14. Jensen J., Norby J. G. On the specificity of the ATP-binding site of (Na+ + K+)-activated ATPase from brain microsomes. Biochim Biophys Acta. 1971 Apr 13;233(2):395–403. doi: 10.1016/0005-2736(71)90336-1. [DOI] [PubMed] [Google Scholar]
  15. Jensen J., Ottolenghi P. ATP binding to solubilized (Na+ + K+)-ATPase. The abolition of subunit-subunit interaction and the maximum weight of the nucleotide-binding unit. Biochim Biophys Acta. 1983 Jun 10;731(2):282–289. doi: 10.1016/0005-2736(83)90020-2. [DOI] [PubMed] [Google Scholar]
  16. Jorgensen P. L. Purification and characterization of (Na+ plus K+ )-ATPase. 3. Purification from the outer medulla of mammalian kidney after selective removal of membrane components by sodium dodecylsulphate. Biochim Biophys Acta. 1974 Jul 12;356(1):36–52. doi: 10.1016/0005-2736(74)90292-2. [DOI] [PubMed] [Google Scholar]
  17. Jorgensen P. L. Purification and characterization of (Na+, K+)-ATPase. V. Conformational changes in the enzyme Transitions between the Na-form and the K-form studied with tryptic digestion as a tool. Biochim Biophys Acta. 1975 Sep 2;401(3):399–415. doi: 10.1016/0005-2736(75)90239-4. [DOI] [PubMed] [Google Scholar]
  18. Jørgensen P. L., Petersen J. High-affinity 86Rb-binding and structural changes in the alpha-subunit of Na+,K+-ATPase as detected by tryptic digestion and fluorescence analysis. Biochim Biophys Acta. 1982 Jul 12;705(1):38–47. doi: 10.1016/0167-4838(82)90333-8. [DOI] [PubMed] [Google Scholar]
  19. Kanike K., Lindenmayer G. E., Wallick E. T., Lane L. K., Schwartz A. Specific sodium-22 binding to a purified sodium + potassium adenosine triphosphatase. Inhibition by ouabain. J Biol Chem. 1976 Aug 10;251(15):4794–4795. [PubMed] [Google Scholar]
  20. Karlish S. J., Pick U. Sidedness of the effects of sodium and potassium ions on the conformational state of the sodium-potassium pump. J Physiol. 1981 Mar;312:505–529. doi: 10.1113/jphysiol.1981.sp013641. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. Karlish S. J., Yates D. W., Glynn I. M. Conformational transitions between Na+-bound and K+-bound forms of (Na+ + K+)-ATPase, studied with formycin nucleotides. Biochim Biophys Acta. 1978 Jul 7;525(1):252–264. doi: 10.1016/0005-2744(78)90219-x. [DOI] [PubMed] [Google Scholar]
  22. Karlish S. J., Yates D. W. Tryptophan fluorescence of (Na+ + K+)-ATPase as a tool for study of the enzyme mechanism. Biochim Biophys Acta. 1978 Nov 10;527(1):115–130. doi: 10.1016/0005-2744(78)90261-9. [DOI] [PubMed] [Google Scholar]
  23. Klotz I. M., Hunston D. L. Protein affinities for small molecules: conceptions and misconceptions. Arch Biochem Biophys. 1979 Apr 1;193(2):314–328. doi: 10.1016/0003-9861(79)90036-5. [DOI] [PubMed] [Google Scholar]
  24. Klotz I. M., Hunston D. L. Protein interactions with small molecules. Relationships between stoichiometric binding constants, site binding constants, and empirical binding parameters. J Biol Chem. 1975 Apr 25;250(8):3001–3009. [PubMed] [Google Scholar]
  25. LOWRY O. H., ROSEBROUGH N. J., FARR A. L., RANDALL R. J. Protein measurement with the Folin phenol reagent. J Biol Chem. 1951 Nov;193(1):265–275. [PubMed] [Google Scholar]
  26. Matsui H., Hayashi Y., Homareda H., Kimimura M. Ouabain-sensitive 42K binding to Na+, K+-ATPase purified from canine kidney outer medulla. Biochem Biophys Res Commun. 1977 Mar 21;75(2):373–380. doi: 10.1016/0006-291x(77)91052-x. [DOI] [PubMed] [Google Scholar]
  27. Matsui H., Homareda H. Interaction of sodium and potassium ions with Na+,K+-ATPase. I. Ouabain-sensitive alternative binding of three Na+ or two K+ to the enzyme. J Biochem. 1982 Jul;92(1):193–217. doi: 10.1093/oxfordjournals.jbchem.a133916. [DOI] [PubMed] [Google Scholar]
  28. Norby J. G., Jensen J. Binding of ATP to Na+, K+-ATPase. Ann N Y Acad Sci. 1974;242(0):158–167. doi: 10.1111/j.1749-6632.1974.tb19088.x. [DOI] [PubMed] [Google Scholar]
  29. Norby J. G., Jensen J. Binding of ATP to brain microsomal ATPase. Determination of the ATP-binding capacity and the dissociation constant of the enzyme-ATP complex as a function of K+ concentration. Biochim Biophys Acta. 1971 Mar 9;233(1):104–116. doi: 10.1016/0005-2736(71)90362-2. [DOI] [PubMed] [Google Scholar]
  30. Norby J. G. Studies on a coupled enzyme assay for rate measurements of ATPase reactions. Acta Chem Scand. 1971;25(7):2717–2726. [PubMed] [Google Scholar]
  31. Nørby J. G., Ottolenghi P., Jensen J. Scatchard plot: common misinterpretation of binding experiments. Anal Biochem. 1980 Mar 1;102(2):318–320. doi: 10.1016/0003-2697(80)90160-8. [DOI] [PubMed] [Google Scholar]
  32. Ottolenghi P., Jensen J. The K+-induced apparent heterogeneity of high-affinity nucleotide-binding sites in (Na+ + K+)-ATPase can only be due to the oligomeric structure of the enzyme. Biochim Biophys Acta. 1983 Jan 5;727(1):89–100. doi: 10.1016/0005-2736(83)90372-3. [DOI] [PubMed] [Google Scholar]
  33. Robinson J. D., Flashner M. S. The (Na+ + K+)-activated ATPase. Enzymatic and transport properties. Biochim Biophys Acta. 1979 Aug 17;549(2):145–176. doi: 10.1016/0304-4173(79)90013-2. [DOI] [PubMed] [Google Scholar]
  34. SEN A. K., POST R. L. STOICHIOMETRY AND LOCALIZATION OF ADENOSINE TRIPHOSPHATE-DEPENDENT SODIUM AND POTASSIUM TRANSPORT IN THE ERYTHROCYTE. J Biol Chem. 1964 Jan;239:345–352. [PubMed] [Google Scholar]
  35. Skou J. C. Effect of ATP on the intermediary steps of the reaction of the (Na+ plus K+)-dependent enzyme system. 3. Effect on the p-nitrophenylphosphatase activity of the system. Biochim Biophys Acta. 1974 Mar 15;339(2):258–273. [PubMed] [Google Scholar]
  36. Skou J. C., Esmann M. Effects of ATP and protons on the Na : K selectivity of the (Na+ + K+)-ATPase studied by ligand effects on intrinsic and extrinsic fluorescence. Biochim Biophys Acta. 1980 Sep 18;601(2):386–402. doi: 10.1016/0005-2736(80)90543-x. [DOI] [PubMed] [Google Scholar]
  37. Whittam R., Ager M. E. The connexion between active cation transport and metabolism in erythrocytes. Biochem J. 1965 Oct;97(1):214–227. doi: 10.1042/bj0970214. [DOI] [PMC free article] [PubMed] [Google Scholar]
  38. Yamaguchi M., Tonomura Y. Simultaneous binding of three Na+ and two K+ ions to Na+,K+-dependent ATPase and changes in its affinities for the ions induced by the formation of a phosphorylated intermediate. J Biochem. 1979 Aug;86(2):509–523. doi: 10.1093/oxfordjournals.jbchem.a132551. [DOI] [PubMed] [Google Scholar]

Articles from The Journal of Physiology are provided here courtesy of The Physiological Society

RESOURCES