Skip to main content
Biochemical Journal logoLink to Biochemical Journal
. 1963 Mar;86(3):432–446. doi: 10.1042/bj0860432

Substrate competition in the respiration of animal tissues. The metabolic interactions of pyruvate and α-oxoglutarate in rat-liver homogenates

R J Haslam 1,*, H A Krebs 1
PMCID: PMC1201777  PMID: 13960888

Full text

PDF
432

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. BARTLEY W. An effect of bicarbonate on the oxidation of pyruvate by kidney homogenates. Biochem J. 1953 Jan;53(2):305–312. doi: 10.1042/bj0530305. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. BARTLEY W., DAVIES R. E. Active transport of ions by sub-cellular particles. Biochem J. 1954 May;57(1):37–49. doi: 10.1042/bj0570037. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. BARTLEY W. The formation of phosphopyruvate by washed suspensions of sheep kidney particles. Biochem J. 1954 Mar;56(3):387–390. doi: 10.1042/bj0560387. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. DERKS M., GRISOLIA S. Biosynthesis of a metabolically active citrulline-like material unrelated to carbamyl aspartate and carbamyl phosphate. Biochim Biophys Acta. 1958 Dec;30(3):663–664. doi: 10.1016/0006-3002(58)90131-8. [DOI] [PubMed] [Google Scholar]
  5. EL HAWARY M. F. S., THOMPSON R. H. S. Separation and estimation of blood keto acids by paper chromatography. Biochem J. 1953 Feb;53(3):340–347. doi: 10.1042/bj0530340. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. EMMELOT P., BOS C. J. Changes in the levels of glycolytic intermediates resulting from the increase in Pasteur effect produced by alpha-ketoglutarate in aerobically-glycolyzing homogenates of the ascites tumor cell. Biochim Biophys Acta. 1961 May 27;49:596–598. doi: 10.1016/0006-3002(61)90263-3. [DOI] [PubMed] [Google Scholar]
  7. Edson N. L. Ketogenesis-antiketogenesis: Substrate competition in liver. Biochem J. 1936 Oct;30(10):1862–1869. doi: 10.1042/bj0301862. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Edson N. L. Ketogenesis-antiketogenesis: The influence of ammonium chloride on ketone-body formation in liver. Biochem J. 1935 Sep;29(9):2082–2094. doi: 10.1042/bj0292082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. HOLZER H., HOLLDORF A. Isolierung von D-Glycerat-dehydrogenase, einige Eigenschaften des Enzyms und seine Verwendung zur enzymatisch-optischen Bestimmung von Hydroxypyruvat neben Pyruvat. Biochem Z. 1957;329(4):292–312. [PubMed] [Google Scholar]
  10. JENKINS W. T., SIZER I. W. Glutamic aspartic transaminase. II. The influence of pH on absorption spectrum and enzymatic activity. J Biol Chem. 1959 May;234(5):1179–1181. [PubMed] [Google Scholar]
  11. KORNBERG H. L. The metabolism of C2 compounds in micro-organisms. I. The incorporation of [2-14C] acetate by Pseudomonas fluorescens, and by a Corynebacterium, grown on ammonium acetate. Biochem J. 1958 Mar;68(3):535–542. doi: 10.1042/bj0680535. [DOI] [PMC free article] [PubMed] [Google Scholar]
  12. KREBS H. A., BELLAMY D. The interconversion of glutamic acid and aspartic acid in respiring tissues. Biochem J. 1960 Jun;75:523–529. doi: 10.1042/bj0750523. [DOI] [PMC free article] [PubMed] [Google Scholar]
  13. KREBS H. A., EGGLESTON L. V., D'ALESSANDRO A. The effect of succinate and amytal on the reduction of acetoacetate in animal tissues. Biochem J. 1961 Jun;79:537–549. doi: 10.1042/bj0790537. [DOI] [PMC free article] [PubMed] [Google Scholar]
  14. KREBS H. A. Equilibria in transamination systems. Biochem J. 1953 Apr;54(1):82–86. doi: 10.1042/bj0540082. [DOI] [PMC free article] [PubMed] [Google Scholar]
  15. KREBS H. A. The equilibrium constants of the fumarase and aconitase systems. Biochem J. 1953 Apr;54(1):78–82. doi: 10.1042/bj0540078. [DOI] [PMC free article] [PubMed] [Google Scholar]
  16. KULKA R. G., KREBS H. A., EGGLESTON L. V. The reduction of acetoacetate to beta-hydroxybutyrate in animal tissues. Biochem J. 1961 Jan;78:95–106. doi: 10.1042/bj0780095. [DOI] [PMC free article] [PubMed] [Google Scholar]
  17. Krebs H. A., Johnson W. A. Metabolism of ketonic acids in animal tissues. Biochem J. 1937 Apr;31(4):645–660. doi: 10.1042/bj0310645. [DOI] [PMC free article] [PubMed] [Google Scholar]
  18. Krebs H. A. Metabolism of amino-acids: Deamination of amino-acids. Biochem J. 1935 Jul;29(7):1620–1644. doi: 10.1042/bj0291620. [DOI] [PMC free article] [PubMed] [Google Scholar]
  19. Krebs H. A. Quantitative determination of glutamine and glutamic acid. Biochem J. 1948;43(1):51–57. doi: 10.1042/bj0430051. [DOI] [PMC free article] [PubMed] [Google Scholar]
  20. Krebs H. A., Smyth D. H., Evans E. A. Determination of fumarate and malate in animal tissues. Biochem J. 1940 Jul;34(7):1041–1045. doi: 10.1042/bj0341041. [DOI] [PMC free article] [PubMed] [Google Scholar]
  21. LARGE P. J., PEEL D., QUAYLE J. R. Microbial growth on C1 compounds. II. Synthesis of cell constituents by methanol- and formate-grown Pseudomonas AM 1, and methanol-grown Hyphomicrobium vulgare. Biochem J. 1961 Dec;81:470–480. doi: 10.1042/bj0810470. [DOI] [PMC free article] [PubMed] [Google Scholar]
  22. MEYER H. The ninhydrin reaction and its analytical applications. Biochem J. 1957 Oct;67(2):333–340. doi: 10.1042/bj0670333. [DOI] [PMC free article] [PubMed] [Google Scholar]
  23. NISONOFF A., BARNES F. W., Jr, ENNS T., VON SCHUCHING S. Mechanisms in enzymatic transamination reaction between carbon chains of same length. Bull Johns Hopkins Hosp. 1954 Mar;94(3):117–127. [PubMed] [Google Scholar]
  24. NOSSAL P. M. Estimation of L-malate and fumarate by malic decarboxylase of Lactobacillus arabinosus. Biochem J. 1952 Jan;50(3):349–355. doi: 10.1042/bj0500349. [DOI] [PMC free article] [PubMed] [Google Scholar]
  25. RODGERS K. Estimation of succinic acid in biological materials. Biochem J. 1961 Aug;80:240–244. doi: 10.1042/bj0800240. [DOI] [PMC free article] [PubMed] [Google Scholar]
  26. SERLIN I., COTZIAS G. C. Microdiffusion of acetic acid as an assay for acetylcholinesterase. J Biol Chem. 1955 Jul;215(1):263–268. [PubMed] [Google Scholar]
  27. STICKLAND R. G. Some properties of the malic enzyme of pigeon liver. 1. Conversion of malate into pyruvate. Biochem J. 1959 Dec;73:646–654. doi: 10.1042/bj0730646. [DOI] [PMC free article] [PubMed] [Google Scholar]
  28. TAYLOR T. G. A modified procedure for the microdetermination of citric acid. Biochem J. 1953 Apr;54(1):48–49. doi: 10.1042/bj0540048. [DOI] [PMC free article] [PubMed] [Google Scholar]
  29. THIN C., ROBERTSON A. The estimation of acetone bodies. Biochem J. 1952 May;51(2):218–223. doi: 10.1042/bj0510218. [DOI] [PMC free article] [PubMed] [Google Scholar]
  30. TYLER D. B. Effect of citric acid-cycle intermediates on oxaloacetate utilization and succinate oxidation. Biochem J. 1960 Aug;76:293–297. doi: 10.1042/bj0760293. [DOI] [PMC free article] [PubMed] [Google Scholar]
  31. WALKER P. G. A colorimetric method for the estimation of acetoacetate. Biochem J. 1954 Dec;58(4):699–704. doi: 10.1042/bj0580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  32. WALKER P. G. A colorimetric method for the estimation of acetoacetate. Biochem J. 1954 Dec;58(4):699–704. doi: 10.1042/bj0580699. [DOI] [PMC free article] [PubMed] [Google Scholar]
  33. WIELAND O. Eine optisch-enzymatische Bestimmung der L-(+)-Milchsäure mit DPN-unabhängiger Milchsäure-dehydrogenase aus Hefe. Biochem Z. 1958;329(7):568–576. [PubMed] [Google Scholar]
  34. WILLIAMSON J. R., KREBS H. A. Acetoacetate as fuel of respiration in the perfused rat heart. Biochem J. 1961 Sep;80:540–547. doi: 10.1042/bj0800540. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Biochemical Journal are provided here courtesy of The Biochemical Society

RESOURCES