Skip to main content
Genetics logoLink to Genetics
. 1982 Mar;100(3):533–545. doi: 10.1093/genetics/100.3.533

Testing Neutrality in Subdivided Populations

Montgomery Slatkin 1
PMCID: PMC1201828  PMID: 17246070

Abstract

Statistical tests of the neutrality hypothesis that are based on the sampling theory of Ewens (1972) require the assumption of panmixia. It is proposed that for a population comprising numerous local populations with weak gene flow among them, tests based on Ewens' theory can be applied separately to samples from each local population. At low levels of gene flow, migration acts primarily like mutation, introducing new alleles to each local population. It is shown with simulation results that, at low levels of migration, correlations in allele frequencies among demes are sufficiently small that the results from the application of Ewens' theory to each deme are statistically independent. It is also shown that, by combining the results of the tests in different demes, some statistical power to detect deviations from neutrality is gained. The method is illustrated with the application to data on a salamander species. At low levels of gene flow, population subdivision must be taken account of in testing neutrality and the proposed test provides one way to do so.

Full Text

The Full Text of this article is available as a PDF (794.3 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Ewens W. J. The sampling theory of selectively neutral alleles. Theor Popul Biol. 1972 Mar;3(1):87–112. doi: 10.1016/0040-5809(72)90035-4. [DOI] [PubMed] [Google Scholar]
  2. Ohta T. Role of very slightly deleterious mutations in molecular evolution and polymorphism. Theor Popul Biol. 1976 Dec;10(3):254–275. doi: 10.1016/0040-5809(76)90019-8. [DOI] [PubMed] [Google Scholar]
  3. Wright S. Evolution in Mendelian Populations. Genetics. 1931 Mar;16(2):97–159. doi: 10.1093/genetics/16.2.97. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES