Skip to main content
Genetics logoLink to Genetics
. 1982 Jul;101(3-4):431–446. doi: 10.1093/genetics/101.3-4.431

Genetic Variation in the Expression of ADH in DROSOPHILA MELANOGASTER

G Maroni, C C Laurie-Ahlberg, D A Adams, A N Wilton
PMCID: PMC1201870  PMID: 6816669

Abstract

Several chromosomes derived from natural populations have been identified that affect the expression of alcohol dehydrogenase (ADH). Second chromosomes, which also carry the structural gene Adh, show a great deal of polymorphism of genetic elements that determine how much enzyme protein accumulates. The level of enzyme was measured in third instar larvae, 6-to-8-day-old males and in larval fat bodies and alimentary canals. In general, activities in the different organs and stages are highly correlated with one another. One line was found, however, in which the ADH level in the fat body is more than twice the level one would expect on the basis of the activity in alimentary canal. We have also found evidence of third-chromosome elements that affect the level of ADH.

Full Text

The Full Text of this article is available as a PDF (902.6 KB).

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Abraham I., Doane W. W. Genetic regulation of tissue-specific expression of amylase structural genes in Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Sep;75(9):4446–4450. doi: 10.1073/pnas.75.9.4446. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Bradford M. M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem. 1976 May 7;72:248–254. doi: 10.1006/abio.1976.9999. [DOI] [PubMed] [Google Scholar]
  3. Clarke B., Camfield R. G., Galvin A. M., Pitts C. R. Environmental factors affecting the quantity of alcohol dehydrogenase in Drosophila melanogaster. Nature. 1979 Aug 9;280(5722):517–518. doi: 10.1038/280517a0. [DOI] [PubMed] [Google Scholar]
  4. Clarke B. The contribution of ecological genetics to evolutionary theory: detecting the direct effects of natural selection on particular polymorphic loci. Genetics. 1975 Jun;79 (Suppl):101–113. [PubMed] [Google Scholar]
  5. David J. R., Bocquet C., Arens M. F., Fouillet P. Biological role of alcohol dehydrogenase in the tolerance of Drosophila melanogaster to aliphatic alochols: utilization of an ADH-null mutant. Biochem Genet. 1976 Dec;14(11-12):989–997. doi: 10.1007/BF00485131. [DOI] [PubMed] [Google Scholar]
  6. Day T. H., Hillier P. C., Clarke B. The relative quantities and catalytic activities of enzymes produced by alleles at the alcohol dehydrogenase locus in Drosophila melanogaster. Biochem Genet. 1974 Feb;11(2):155–165. doi: 10.1007/BF00485771. [DOI] [PubMed] [Google Scholar]
  7. Fletcher T. S., Ayala F. J., Thatcher D. R., Chambers G. K. Structural analysis of the ADHS electromorph of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1978 Nov;75(11):5609–5612. doi: 10.1073/pnas.75.11.5609. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Goldberg D. A. Isolation and partial characterization of the Drosophila alcohol dehydrogenase gene. Proc Natl Acad Sci U S A. 1980 Oct;77(10):5794–5798. doi: 10.1073/pnas.77.10.5794. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Laurie-Ahlberg C. C., Maroni G., Bewley G. C., Lucchesi J. C., Weir B. S. Quantitative genetic variation of enzyme activities in natural populations of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1980 Feb;77(2):1073–1077. doi: 10.1073/pnas.77.2.1073. [DOI] [PMC free article] [PubMed] [Google Scholar]
  10. McDonald J. F., Anderson S. M., Santos M. Biochemical differences between products of the Adh locus in Drosophila. Genetics. 1980 Aug;95(4):1013–1022. doi: 10.1093/genetics/95.4.1013. [DOI] [PMC free article] [PubMed] [Google Scholar]
  11. McDonald J. F., Ayala F. J. Gene regulation in adaptive evolution. Can J Genet Cytol. 1978 Jun;20(2):159–175. doi: 10.1139/g78-018. [DOI] [PubMed] [Google Scholar]

Articles from Genetics are provided here courtesy of Oxford University Press

RESOURCES