Abstract
Eight dominant X-chromosome nondisjunction mutants have been identified and characterized. Hermaphrodites (XX) heterozygous for any one of the mutations produce 20–35% male (XO) self-progeny compared with the wild-type frequency of 0.2%. Seven of the eight mutants carry X-autosome translocations. Three of these, represented by mnT2, involve linkage group (LG) II and show severe crossover suppression for X-linked markers. The two half-translocations comprising mnT2 are separable and of very unequal size. The smaller one includes the left tip of X and the right end of LGII and can exist as a free duplication, being present in addition to the normal chromosome complement, in either hermaphrodites or males; it has no effect on X nondisjunction. The reciprocal half-translocation of mnT2 includes the bulk of both LGII and X chromosomes; it disjoins regularly from a normal LGII and confers the property of X-chromosome nondisjunction. A fourth translocation, mnT10(V;X), is also reciprocal and consists of half-translocations that recombine with V and X, respectively. Either half-translocation of mnT10 can exist in heterozygous form in the absence of the other to give heterozygous duplication-deficiency animals; the property of X-chromosome nondisjunction is conferred, in homozygotes as well as heterozygotes, solely by one of the half-translocations, which is deficient for the left tip of the X. The final three translocations have X breakpoints near the right end of X and autosomal breakpoints near the right end of LGIV, the left end of LGV and the right end of LGI, respectively. All three are homozygous inviable. Males hemizygous for the X portion of any of the seven translocations are viable and fertile. The final mutant, mn164, maps as a point at or near the left tip of the X and causes X-chromosome nondisjunction in both heterozygotes and homozygotes. In heterozygotes, mn164 promotes equational nondisjunction of itself but not its wild-type allele. The mutants are discussed in light of the holocentric nature of the C. elegans chromosomes. It is proposed that the left end of the X chromosome plays a critical structural role in the segregation of X chromosomes during meiosis in XX animals.
Full Text
The Full Text of this article is available as a PDF (1.4 MB).
Selected References
These references are in PubMed. This may not be the complete list of references from this article.
- Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974 May;77(1):71–94. doi: 10.1093/genetics/77.1.71. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Chandley A. C. Application of the "distributive pairing" hypothesis to problems of segregation in translocation heterozygotes of Drosophila melanogaster. Genetics. 1965 Aug;52(2):247–258. doi: 10.1093/genetics/52.2.247. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Cox G. N., Laufer J. S., Kusch M., Edgar R. S. Genetic and Phenotypic Characterization of Roller Mutants of CAENORHABDITIS ELEGANS. Genetics. 1980 Jun;95(2):317–339. doi: 10.1093/genetics/95.2.317. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Goldstein P., Triantaphyllou A. C. The ultrastructure of sperm development in the plant-parasitic nematode Meloidogyne hapla. J Ultrastruct Res. 1980 May;71(2):143–153. doi: 10.1016/s0022-5320(80)90102-1. [DOI] [PubMed] [Google Scholar]
- Hawley R. S. Chromosomal sites necessary for normal levels of meiotic recombination in Drosophila melanogaster. I. Evidence for and mapping of the sites. Genetics. 1980 Mar;94(3):625–646. doi: 10.1093/genetics/94.3.625. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Herman T. S., Jones S. E. Systematic restaging in patients with Hodgkin's disease: a Southwest Oncology Group Study. Cancer. 1978 Oct;42(4):1976–1982. doi: 10.1002/1097-0142(197810)42:4<1976::aid-cncr2820420442>3.0.co;2-n. [DOI] [PubMed] [Google Scholar]
- Hodgkin J. A., Brenner S. Mutations causing transformation of sexual phenotype in the nematode Caenorhabditis elegans. Genetics. 1977 Jun;86(2 Pt 1):275–287. [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J., Horvitz H. R., Brenner S. Nondisjunction Mutants of the Nematode CAENORHABDITIS ELEGANS. Genetics. 1979 Jan;91(1):67–94. doi: 10.1093/genetics/91.1.67. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Hodgkin J. More sex-determination mutants of Caenorhabditis elegans. Genetics. 1980 Nov;96(3):649–664. doi: 10.1093/genetics/96.3.649. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvitz H. R., Brenner S., Hodgkin J., Herman R. K. A uniform genetic nomenclature for the nematode Caenorhabditis elegans. Mol Gen Genet. 1979 Sep;175(2):129–133. doi: 10.1007/BF00425528. [DOI] [PubMed] [Google Scholar]
- Horvitz H. R., Sulston J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980 Oct;96(2):435–454. doi: 10.1093/genetics/96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Horvitz H. R., Sulston J. E. Isolation and genetic characterization of cell-lineage mutants of the nematode Caenorhabditis elegans. Genetics. 1980 Oct;96(2):435–454. doi: 10.1093/genetics/96.2.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Meneely P. M., Herman R. K. Suppression and function of X-linked lethal and sterile mutations in Caenorhabditis elegans. Genetics. 1981 Jan;97(1):65–84. doi: 10.1093/genetics/97.1.65. [DOI] [PMC free article] [PubMed] [Google Scholar]
- NIGON V., BRUN J. L'évolution des structures nucléaires dans l'ovogenèse de Caenorhabditis elegans Maupas 1900. Chromosoma. 1955;7(2-3):129–169. doi: 10.1007/BF00329722. [DOI] [PubMed] [Google Scholar]
- Rosenbluth R. E., Baillie D. L. The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. Genetics. 1981 Nov-Dec;99(3-4):415–428. doi: 10.1093/genetics/99.3-4.415. [DOI] [PMC free article] [PubMed] [Google Scholar]
- Waterston R. H., Thomson J. N., Brenner S. Mutants with altered muscle structure of Caenorhabditis elegans. Dev Biol. 1980 Jun 15;77(2):271–302. doi: 10.1016/0012-1606(80)90475-3. [DOI] [PubMed] [Google Scholar]